enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.

  3. Westgard rules - Wikipedia

    en.wikipedia.org/wiki/Westgard_Rules

    2 2s: 2 consecutive measurements exceed 2 standard deviations of the reference range, and on the same side of the mean. Inaccuracy and/or imprecision R 4s: Two measurements in the same run have a 4 standard deviation difference (such as one exceeding 2 standard deviations above the mean, and another exceeding 2 standard deviations below the mean).

  4. Standard deviation - Wikipedia

    en.wikipedia.org/wiki/Standard_deviation

    Example of samples from two populations with the same mean but different standard deviations. Red population has mean 100 and SD 10; blue population has mean 100 and SD 50. A large standard deviation indicates that the data points can spread far from the mean and a small standard deviation indicates that they are clustered closely around the mean.

  5. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    About 68% of values drawn from a normal distribution are within one standard deviation σ from the mean; about 95% of the values lie within two standard deviations; and about 99.7% are within three standard deviations. [8] This fact is known as the 68–95–99.7 (empirical) rule, or the 3-sigma rule.

  6. Standard score - Wikipedia

    en.wikipedia.org/wiki/Standard_score

    Comparison of the various grading methods in a normal distribution, including: standard deviations, cumulative percentages, percentile equivalents, z-scores, T-scores. In statistics, the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured.

  7. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    For a value that is sampled with an unbiased normally distributed error, the above depicts the proportion of samples that would fall between 0, 1, 2, and 3 standard deviations above and below the actual value.

  8. Deviation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Deviation_(statistics)

    Positive deviations (above the mean) and negative deviations (below the mean) are included in the calculation. The mean signed deviation provides a measure of the average distance and direction of data points from the mean, offering insights into the overall trend and distribution of the data. [3]

  9. Percentile - Wikipedia

    en.wikipedia.org/wiki/Percentile

    Two standard deviations from the mean (dark and medium blue) account for about 95.4%, and three standard deviations (dark, medium, and light blue) for about 99.7%. The methods given in the calculation methods section (below) are approximations for use in small-sample statistics.