Search results
Results from the WOW.Com Content Network
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
The alkoxide ion is a strong base so the proton is transferred from the carboxylic acid to the alkoxide ion, creating an alcohol: saponification part III. In a classic laboratory procedure, the triglyceride trimyristin is obtained by extracting it from nutmeg with diethyl ether. Saponification to the soap sodium myristate takes place using NaOH ...
The only hydrates with stable melting points are NaOH·H 2 O (65.10 °C) and NaOH·3.5H 2 O (15.38 °C). The other hydrates, except the metastable ones NaOH·3H 2 O and NaOH·4H 2 O (β) can be crystallized from solutions of the proper composition, as listed above. However, solutions of NaOH can be easily supercooled by many degrees, which ...
Allyl alcohol is produced commercially by the Olin and Shell corporations through the hydrolysis of allyl chloride: . CH 2 =CHCH 2 Cl + NaOH → CH 2 =CHCH 2 OH + NaCl. Allyl alcohol can also be made by the rearrangement of propylene oxide, a reaction that is catalyzed by potassium alum at high temperature.
For example, sodium hydroxide, NaOH, is a strong base. NaOH(aq) → Na + (aq) + OH − (aq) Therefore, when a strong acid reacts with a strong base the neutralization reaction can be written as H + + OH − → H 2 O. For example, in the reaction between hydrochloric acid and sodium hydroxide the sodium and chloride ions, Na + and Cl − take ...
The reaction between sodium hydroxide and some metals is also hazardous. Aluminium, magnesium, zinc, tin, chromium, brass and bronze all react with lye to produce hydrogen gas. Since hydrogen is flammable, mixing a large quantity of lye with aluminium could result in an explosion. Both the potassium and sodium forms are able to dissolve copper.
Sodium ethoxide, also referred to as sodium ethanolate, is the ionic, organic compound with the formula CH 3 CH 2 ONa, C 2 H 5 O Na, or NaOEt (Et = ethyl). It is a white solid, although impure samples appear yellow or brown. It dissolves in polar solvents such as ethanol. It is commonly used as a strong base. [2]
The reaction usually requires a catalyst, such as concentrated sulfuric acid: R−OH + R'−CO 2 H → R'−CO 2 R + H 2 O. Other types of ester are prepared in a similar manner−for example, tosyl (tosylate) esters are made by reaction of the alcohol with 4-toluenesulfonyl chloride in pyridine.