enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning

    Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...

  3. Neuroevolution - Wikipedia

    en.wikipedia.org/wiki/Neuroevolution

    Most neural networks use gradient descent rather than neuroevolution. However, around 2017 researchers at Uber stated they had found that simple structural neuroevolution algorithms were competitive with sophisticated modern industry-standard gradient-descent deep learning algorithms, in part because neuroevolution was found to be less likely to get stuck in local minima.

  4. Evolutionary algorithm - Wikipedia

    en.wikipedia.org/wiki/Evolutionary_algorithm

    The areas in which evolutionary algorithms are practically used are almost unlimited [6] and range from industry, [33] [34] engineering, [3] [4] [35] complex scheduling, [5] [36] [37] agriculture, [38] robot movement planning [39] and finance [40] [41] to research [42] [43] and art. The application of an evolutionary algorithm requires some ...

  5. Neuroevolution of augmenting topologies - Wikipedia

    en.wikipedia.org/wiki/Neuroevolution_of...

    The competing conventions problem arises when there is more than one way of representing information in a phenotype. For example, if a genome contains neurons A, B and C and is represented by [A B C], if this genome is crossed with an identical genome (in terms of functionality) but ordered [C B A] crossover will yield children that are missing information ([A B A] or [C B C]), in fact 1/3 of ...

  6. Deep reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Deep_reinforcement_learning

    Various techniques exist to train policies to solve tasks with deep reinforcement learning algorithms, each having their own benefits. At the highest level, there is a distinction between model-based and model-free reinforcement learning, which refers to whether the algorithm attempts to learn a forward model of the environment dynamics.

  7. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    Almost any algorithm will work well with the correct hyperparameters [164] for training on a particular data set. However, selecting and tuning an algorithm for training on unseen data requires significant experimentation. Robustness: If the model, cost function and learning algorithm are selected appropriately, the resulting ANN can become robust.

  8. Machine learning in bioinformatics - Wikipedia

    en.wikipedia.org/wiki/Machine_learning_in...

    In addition, machine learning has been applied to systems biology problems such as identifying transcription factor binding sites using Markov chain optimization. [2] Genetic algorithms, machine learning techniques which are based on the natural process of evolution, have been used to model genetic networks and regulatory structures. [2]

  9. Reinforcement learning from human feedback - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning...

    In machine learning, reinforcement learning from human feedback (RLHF) is a technique to align an intelligent agent with human preferences. It involves training a reward model to represent preferences, which can then be used to train other models through reinforcement learning .