enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Furstenberg's proof of the infinitude of primes - Wikipedia

    en.wikipedia.org/wiki/Furstenberg's_proof_of_the...

    In mathematics, particularly in number theory, Hillel Furstenberg's proof of the infinitude of primes is a topological proof that the integers contain infinitely many prime numbers. When examined closely, the proof is less a statement about topology than a statement about certain properties of arithmetic sequences. [1] [2] Unlike Euclid's ...

  3. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Since no prime number divides 1, p cannot be in the list. This means that at least one more prime number exists that is not in the list. This proves that for every finite list of prime numbers there is a prime number not in the list. [4] In the original work, Euclid denoted the arbitrary finite set of prime numbers as A, B, Γ. [5]

  4. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.

  5. Jape (software) - Wikipedia

    en.wikipedia.org/wiki/Jape_(software)

    [2]: 60 When the user adds and removes the proof steps, the proof tree is constructed which Jape can show either in a tree shape or in box forms. [5] Jape allows to display proofs at different levels of abstraction. It is also possible to present a forward proof in a natural deduction style by using the specialized modes of display for proofs. [6]

  6. Arithmetic progression topologies - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression...

    Both the Furstenberg and Golomb topologies furnish a proof that there are infinitely many prime numbers. [1] [2] A sketch of the proof runs as follows: Fix a prime p and note that the (positive, in the Golomb space case) integers are a union of finitely many residue classes modulo p. Each residue class is an arithmetic progression, and thus clopen.

  7. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    In 1737, Euler related the study of prime numbers to what is known now as the Riemann zeta function: he showed that the value () reduces to a ratio of two infinite products, Π p / Π (p–1), for all primes p, and that the ratio is infinite. [1] [2] In 1775, Euler stated the theorem for the cases of a + nd, where a = 1. [3]

  8. Euclid–Mullin sequence - Wikipedia

    en.wikipedia.org/wiki/Euclid–Mullin_sequence

    The Euclid–Mullin sequence is an infinite sequence of distinct prime numbers, in which each element is the least prime factor of one plus the product of all earlier elements. They are named after the ancient Greek mathematician Euclid , because their definition relies on an idea in Euclid's proof that there are infinitely many primes , and ...

  9. AKS primality test - Wikipedia

    en.wikipedia.org/wiki/AKS_primality_test

    The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". [1]