enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    In theory, classic RNNs can keep track of arbitrary long-term dependencies in the input sequences. The problem with classic RNNs is computational (or practical) in nature: when training a classic RNN using back-propagation, the long-term gradients which are back-propagated can "vanish", meaning they can tend to zero due to very small numbers creeping into the computations, causing the model to ...

  3. Connectionist temporal classification - Wikipedia

    en.wikipedia.org/wiki/Connectionist_temporal...

    Connectionist temporal classification (CTC) is a type of neural network output and associated scoring function, for training recurrent neural networks (RNNs) such as LSTM networks to tackle sequence problems where the timing is variable.

  4. Seq2seq - Wikipedia

    en.wikipedia.org/wiki/Seq2seq

    Shannon's diagram of a general communications system, showing the process by which a message sent becomes the message received (possibly corrupted by noise). seq2seq is an approach to machine translation (or more generally, sequence transduction) with roots in information theory, where communication is understood as an encode-transmit-decode process, and machine translation can be studied as a ...

  5. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    LSTM prevents backpropagated errors from vanishing or exploding. [55] Instead, errors can flow backward through unlimited numbers of virtual layers unfolded in space. That is, LSTM can learn tasks that require memories of events that happened thousands or even millions of discrete time steps earlier.

  6. Syntactic parsing (computational linguistics) - Wikipedia

    en.wikipedia.org/wiki/Syntactic_parsing...

    In this approach, constituent parsing is modelled like machine translation: the task is sequence-to-sequence conversion from the sentence to a constituency parse, in the original paper using a deep LSTM with an attention mechanism. The gold training trees have to be linearised for this kind of model, but the conversion does not lose any ...

  7. Mamba (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Mamba_(deep_learning...

    This method reduces the computational demands typically associated with self-attention in visual tasks. Tested on ImageNet classification, COCO object detection, and ADE20k semantic segmentation, Vim showcases enhanced performance and efficiency and is capable of handling high-resolution images with lower computational resources. This positions ...

  8. Natural Language Toolkit - Wikipedia

    en.wikipedia.org/wiki/Natural_Language_Toolkit

    The Natural Language Toolkit, or more commonly NLTK, is a suite of libraries and programs for symbolic and statistical natural language processing (NLP) for English written in the Python programming language. It supports classification, tokenization, stemming, tagging, parsing, and semantic reasoning functionalities. [4]

  9. Bidirectional recurrent neural networks - Wikipedia

    en.wikipedia.org/wiki/Bidirectional_recurrent...

    Bidirectional recurrent neural networks (BRNN) connect two hidden layers of opposite directions to the same output.With this form of generative deep learning, the output layer can get information from past (backwards) and future (forward) states simultaneously.