Search results
Results from the WOW.Com Content Network
Work hardening is a consequence of plastic deformation, a permanent change in shape. This is distinct from elastic deformation, which is reversible. Most materials do not exhibit only one or the other, but rather a combination of the two. The following discussion mostly applies to metals, especially steels, which are well studied.
A break occurs after the material has reached the end of the elastic, and then plastic, deformation ranges. At this point forces accumulate until they are sufficient to cause a fracture. All materials will eventually fracture, if sufficient forces are applied.
The two plastic limit theorems apply to any elastic-perfectly plastic body or assemblage of bodies. Lower limit theorem: If an equilibrium distribution of stress can be found which balances the applied load and nowhere violates the yield criterion, the body (or bodies) will not fail, or will be just at the point of failure.
An idealized uniaxial stress-strain curve showing elastic and plastic deformation regimes for the deformation theory of plasticity There are several mathematical descriptions of plasticity. [ 12 ] One is deformation theory (see e.g. Hooke's law ) where the Cauchy stress tensor (of order d-1 in d dimensions) is a function of the strain tensor.
Plastic shakedown behavior is one in which the steady state is a closed elastic-plastic loop, with no net accumulation of plastic deformation. Ratcheting behavior is one in which the steady state is an open elastic-plastic loop, with the material accumulating a net strain during each cycle. Shakedown concept can be applied to solid metallic ...
Plastic deformation of a thin metal sheet. Flow plasticity is a solid mechanics theory that is used to describe the plastic behavior of materials. [1] Flow plasticity theories are characterized by the assumption that a flow rule exists that can be used to determine the amount of plastic deformation in the material.
The ideal elastic solid returns to zero strain immediately, without any after-effect, while in the case of anelasticity total recovery takes time, and that is the aftereffect. The linear viscoelastic solid only recovers partially, because the viscous contribution to strain cannot be recovered.
Qualitatively speaking, superelasticity is the reversible deformation by phase transformation. Therefore, it competes with the irreversible plastic deformation by dislocation motion. At nanoscale, the dislocation density and possible Frank–Read source sites are greatly reduced, so the yield stress is increased with reduced size