Search results
Results from the WOW.Com Content Network
One supposed problem with SMAPE is that it is not symmetric since over- and under-forecasts are not treated equally. The following example illustrates this by applying the second SMAPE formula: Over-forecasting: A t = 100 and F t = 110 give SMAPE = 4.76%; Under-forecasting: A t = 100 and F t = 90 give SMAPE = 5.26%.
Rays emanating from 0 in the z-plane are mapped to horizontal lines in the w-plane. Each circle and ray in the z-plane as above meet at a right angle. Their images under Log are a vertical segment and a horizontal line (respectively) in the w-plane, and these too meet at a right angle. This is an illustration of the conformal property of Log.
An undefined value must not be confused with empty string, Boolean "false" or other "empty" (but defined) values. Depending on circumstances, evaluation to an undefined value may lead to exception or undefined behaviour, but in some programming languages undefined values can occur during a normal, predictable course of program execution.
Undefined parameter values are tricky: if the first positional parameter was not defined in the template call, then {{{1}}} will evaluate to the literal string "{{{1}}}" (i.e., the 7-character string containing three sets of curly braces around the number 1), which is a true value.
The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x. [2] [3] Parentheses are sometimes added for clarity, giving ln(x), log e (x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.
Three-dimensional plot showing the values of the logarithmic mean. In mathematics, the logarithmic mean is a function of two non-negative numbers which is equal to their difference divided by the logarithm of their quotient. This calculation is applicable in engineering problems involving heat and mass transfer.
For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 = 1.724276… means that 10 1.724276… = 53.
For example, the imaginary number is undefined within the set of real numbers. So it is meaningless to reason about the value, solely within the discourse of real numbers. However, defining the imaginary number i {\displaystyle i} to be equal to − 1 {\displaystyle {\sqrt {-1}}} , allows there to be a consistent set of mathematics referred to ...