Search results
Results from the WOW.Com Content Network
The Kelvin–Voigt model, also called the Voigt model, is represented by a purely viscous damper and purely elastic spring connected in parallel as shown in the picture. If, instead, we connect these two elements in series we get a model of a Maxwell material. Since the two components of the model are arranged in parallel, the strains in each ...
These models, which include the Maxwell model, the Kelvin–Voigt model, the standard linear solid model, and the Burgers model, are used to predict a material's response under different loading conditions. Viscoelastic behavior has elastic and viscous components modeled as linear combinations of springs and dashpots, respectively. Each model ...
Diagram of a Maxwell material. The Maxwell model is represented by a purely viscous damper and a purely elastic spring connected in series, [4] as shown in the diagram. If, instead, we connect these two elements in parallel, [4] we get the generalized model of a solid Kelvin–Voigt material.
Dashpot symbol for viscoelastic models Dashpots are used as models of materials that exhibit viscoelastic behavior, such as muscle tissue. Maxwell and Kelvin–Voigt models of viscoelasticity use springs and dashpots in series and parallel circuits respectively.
Connecting a spring and damper in series yields a model of a Maxwell material while connecting a spring and damper in parallel yields a model of a Kelvin–Voigt material. [2] In contrast to the Maxwell and Kelvin–Voigt models, the SLS is slightly more complex, involving elements both in series and in parallel.
On the other hand, the Voigt model is good at predicting creep but rather poor at predicting stress relaxation (see viscoelasticity). The extracellular matrix and most tissues are stress relaxing, and the kinetics of stress relaxation have been recognized as an important mechanical cue that affects the migration, proliferation , and ...
Schematic diagram of Burgers material, Kelvin representation Given that the Kelvin material has an elasticity E 1 {\displaystyle E_{1}} and viscosity η 1 {\displaystyle \eta _{1}} , the spring has an elasticity E 2 {\displaystyle E_{2}} and the dashpot has a viscosity η 2 {\displaystyle \eta _{2}} , the Burgers model has the constitutive equation
Such a model is called a Bingham–Kelvin model by analogy with the Kelvin model. For elastic-perfectly viscoplastic materials, the elastic strain is no longer considered negligible but the rate of plastic strain is only a function of the initial yield stress and there is no influence of hardening.