Search results
Results from the WOW.Com Content Network
Ferromagnetism: A state of matter with spontaneous magnetization. Antiferromagnetism: A state of matter in which the neighboring spin are antiparallel with each other, and there is no net magnetization. Ferrimagnetism: A state in which local moments partially cancel. Altermagnetism: A state with zero net magnetization and spin-split electronic ...
Forms of matter that are not composed of molecules and are organized by different forces can also be considered different states of matter. Superfluids (like Fermionic condensate) and the quark–gluon plasma are examples. In a chemical equation, the state of matter of the chemicals may be shown as (s) for solid, (l) for liquid, and (g) for gas.
In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. [1] [2] Most modern equations of state are formulated in the Helmholtz free energy.
Substances in the chain-melted state display properties of both a solid and a liquid. [3] [7] The co-author of a study regarding the chain-melted state, Andreas Hermann, stated that if the matter were hypothetically to be handled by a person, it would be like holding a wet sponge that is leaking water, while the sponge itself is actually made of water. [8]
The group of halogens is the only periodic table group that contains elements in three of the main states of matter at standard temperature and pressure, though not far above room temperature the same becomes true of groups 1 and 15, assuming white phosphorus is taken as the standard state. [n 1] All of the halogens form acids when bonded to ...
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from its original state, some details may not fully reflect the modified file.
Quark–gluon plasma is a state of matter in which the elementary particles that make up the hadrons of baryonic matter are freed of their strong attraction for one another under extremely high energy densities. [22] These particles are the quarks and gluons that compose baryonic matter. [23]
In the physical sciences, a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water.