Search results
Results from the WOW.Com Content Network
It has the formula [(CH 3) 4 C 2 O 2 B] 2; the pinacol groups are sometimes abbreviated as "pin", so the structure is sometimes represented as B 2 pin 2. It is a colourless solid that is soluble in organic solvents. It is a commercially available reagent for making pinacol boronic esters for organic synthesis.
Boronic acids are used extensively in organic chemistry as chemical building blocks and intermediates predominantly in the Suzuki coupling. A key concept in its chemistry is transmetallation of its organic residue to a transition metal. The compound bortezomib with a boronic acid group is a drug used in chemotherapy.
It is a colorless liquid. [2] It features a reactive B-H functional group. [3] ... Pinacolborane is used in borylation, a form of C-H activation. [8] [9]
Borinic acid, also known as boronous acid, is an oxyacid of boron with formula H 2 BOH. Borinate is the associated anion of borinic acid with formula H 2 BO −; however, being a Lewis acid, the form in basic solution is H 2 B(OH) − 2. Borinic acid can be formed as the first step in the hydrolysis of diborane: [1] BH 3 + H 2 O → H 2 BOH + H 2
Compounds of the type BR n (OR) 3-n are called borinic esters (n = 2), boronic esters (n = 1), and borates (n = 0). Boronic acids are key to the Suzuki reaction. Trimethyl borate, debatably not an organoboron compound, is an intermediate in sodium borohydride production.
Boronic acids and esters are classified depending on the type of carbon group (R) directly bonded to boron, for example alkyl-, alkenyl-, alkynyl-, and aryl-boronic esters. The most common type of starting materials that incorporate boronic esters into organic compounds for transition metal catalyzed borylation reactions have the general ...
Retrieved from "https://en.wikipedia.org/w/index.php?title=Pinacol_boronic_ester&oldid=121008278"
MIDA boronate esters and organotrifluoroborates have both been utilised in "slow release" strategies, in which the reaction conditions are optimised to provide a slow release of boronic acid. This protocol has proved useful in the cross-coupling of some notoriously unstable boronic acids, such as the 2-pyridine boronic acid.