Search results
Results from the WOW.Com Content Network
where b is the number base (10 for decimal), and p is a prime that does not divide b. (Primes p that give cyclic numbers in base b are called full reptend primes or long primes in base b). For example, the case b = 10, p = 7 gives the cyclic number 142857, and the case b = 12, p = 5 gives the cyclic number 2497.
A cyclic number [1] [2] is a natural number n such that n and φ(n) are coprime. Here φ is Euler's totient function. An equivalent definition is that a number n is cyclic if and only if any group of order n is cyclic. [3] Any prime number is clearly cyclic. All cyclic numbers are square-free. [4] Let n = p 1 p 2 …
Therefore, the base b expansion of / repeats the digits of the corresponding cyclic number infinitely, as does that of / with rotation of the digits for any a between 1 and p − 1. The cyclic number corresponding to prime p will possess p − 1 digits if and only if p is a full reptend prime.
A full reptend prime, full repetend prime, proper prime [7]: 166 or long prime in base b is an odd prime number p such that the Fermat quotient = (where p does not divide b) gives a cyclic number with p − 1 digits.
A number n is called a cyclic number if Z/nZ is the only group of order n, which is true exactly when gcd(n, φ(n)) = 1. [13] The sequence of cyclic numbers include all primes, but some are composite such as 15. However, all cyclic numbers are odd except 2. The cyclic numbers are:
For any integer coprime to 10, its reciprocal is a repeating decimal without any non-recurring digits. E.g. 1 ⁄ 143 = 0. 006993 006993 006993.... While the expression of a single series with vinculum on top is adequate, the intention of the above expression is to show that the six cyclic permutations of 006993 can be obtained from this repeating decimal if we select six consecutive digits ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
On one case it adds up to ten and on the other it adds up to nine. To see such proof you must divide 1 by 81 and multiply the answer beginning with one to 9 and see the pattern that takes place. A sequence for example reveals such description by dividing 1 by 999991 to 1 divided by 999999. Cyclic or permutable numbers are another examples.