Search results
Results from the WOW.Com Content Network
Determinants can also be defined by some of their properties. Namely, the determinant is the unique function defined on the n × n matrices that has the four following properties: The determinant of the identity matrix is 1. The exchange of two rows multiplies the determinant by −1.
The Jacobian determinant is sometimes simply referred to as "the Jacobian". The Jacobian determinant at a given point gives important information about the behavior of f near that point. For instance, the continuously differentiable function f is invertible near a point p ∈ R n if the Jacobian determinant at p is non-zero.
Any property of matrices that is preserved under matrix products and inverses can be used to define further matrix groups. For example, matrices with a given size and with a determinant of 1 form a subgroup of (that is, a smaller group contained in) their general linear group, called a special linear group. [67]
The determinant of a square matrix is an important property. The determinant indicates if a matrix is invertible (i.e. the inverse of a matrix exists when the determinant is nonzero). Determinants are used for finding eigenvalues of matrices (see below), and for solving a system of linear equations (see Cramer's rule).
If A is a real m×n matrix, then det(A A T) is equal to the square of the m-dimensional volume of the parallelotope spanned in R n by the m rows of A. Binet's formula states that this is equal to the sum of the squares of the volumes that arise if the parallelepiped is orthogonally projected onto the m -dimensional coordinate planes (of which ...
In mathematics, Dodgson condensation or method of contractants is a method of computing the determinants of square matrices.It is named for its inventor, Charles Lutwidge Dodgson (better known by his pseudonym, as Lewis Carroll, the popular author), who discovered it in 1866. [1]
In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1]If A is a differentiable map from the real numbers to n × n matrices, then
There is a determinant map from the matrix ring GL(R ) to the abelianised unit group R × ab with the following properties: [1] The determinant is invariant under elementary row operations; The determinant of the identity matrix is 1; If a row is left multiplied by a in R × then the determinant is left multiplied by a