enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Line–line_intersection

    Two intersecting lines. In Euclidean geometry, the intersection of a line and a line can be the empty set, a point, or another line.Distinguishing these cases and finding the intersection have uses, for example, in computer graphics, motion planning, and collision detection.

  3. Incidence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Incidence_(geometry)

    The computation of the intersection of two lines shows that the entire pencil of lines centered at a point is determined by any two of the lines that intersect at that point. It immediately follows that the algebraic condition for three lines, [a 1, b 1, c 1], [a 2, b 2, c 2], [a 3, b 3, c 3] to be concurrent is that the determinant,

  4. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    For example, the first Napoleon point is the point of concurrency of the three lines each from a vertex to the centroid of the equilateral triangle drawn on the exterior of the opposite side from the vertex. A generalization of this notion is the Jacobi point. The de Longchamps point is the point of concurrence of several lines with the Euler line.

  5. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    Determinants can also be defined by some of their properties. Namely, the determinant is the unique function defined on the n × n matrices that has the four following properties: The determinant of the identity matrix is 1. The exchange of two rows multiplies the determinant by −1.

  6. Linear space (geometry) - Wikipedia

    en.wikipedia.org/wiki/Linear_space_(geometry)

    A linear space consists of a set of elements called points, and a set of elements called lines. Each line is a distinct subset of the points. The points in a line are said to be incident with the line. Each two points are in a line, and any two lines may have no more than one point in common.

  7. Line–plane intersection - Wikipedia

    en.wikipedia.org/wiki/Line–plane_intersection

    In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is the empty set if the line is parallel to the plane but outside it.

  8. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    If λ 1 and λ 2 have the same algebraic sign, then Q is a real ellipse, imaginary ellipse or real point if K has the same sign, has the opposite sign or is zero, respectively. If λ 1 and λ 2 have opposite algebraic signs, then Q is a hyperbola or two intersecting lines depending on whether K is nonzero or zero, respectively.

  9. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    This proves that all points in the intersection are the same distance from the point E in the plane P, in other words all points in the intersection lie on a circle C with center E. [8] This proves that the intersection of P and S is contained in C. Note that OE is the axis of the circle. Now consider a point D of the circle C.