Search results
Results from the WOW.Com Content Network
Dominating set, a.k.a. domination number [3]: GT2 NP-complete special cases include the edge dominating set problem, i.e., the dominating set problem in line graphs. NP-complete variants include the connected dominating set problem and the maximum leaf spanning tree problem. [3]: ND2 Feedback vertex set [2] [3]: GT7
A problem set, sometimes shortened as pset, [1] is a teaching tool used by many universities. Most courses in physics, math, engineering, chemistry, and computer science will give problem sets on a regular basis. [2] They can also appear in other subjects, such as economics.
In point-set topology, Kuratowski's closure-complement problem asks for the largest number of distinct sets obtainable by repeatedly applying the set operations of closure and complement to a given starting subset of a topological space. The answer is 14. This result was first published by Kazimierz Kuratowski in 1922. [1]
Hilbert's problems ranged greatly in topic and precision. Some of them, like the 3rd problem, which was the first to be solved, or the 8th problem (the Riemann hypothesis), which still remains unresolved, were presented precisely enough to enable a clear affirmative or negative answer.
The transformations of the 15 puzzle form a groupoid (not a group, as not all moves can be composed); [12] [13] [14] this groupoid acts on configurations. Because the combinations of the 15 puzzle can be generated by 3-cycles , it can be proved that the 15 puzzle can be represented by the alternating group A 15 {\displaystyle A_{15}} . [ 15 ]
There are 92 solutions. The problem was first posed in the mid-19th century. In the modern era, it is often used as an example problem for various computer programming techniques. The eight queens puzzle is a special case of the more general n queens problem of placing n non-attacking queens on an n×n chessboard.
First, you have to understand the problem. [2] After understanding, make a plan. [3] Carry out the plan. [4] Look back on your work. [5] How could it be better? If this technique fails, Pólya advises: [6] "If you cannot solve the proposed problem, try to solve first some related problem. Could you imagine a more accessible related problem?"
In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought ...