Search results
Results from the WOW.Com Content Network
The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and Binh. [6] The software developed by Deb can be downloaded, [7] which implements the NSGA-II procedure with GAs, or the program posted on Internet, [8] which implements the NSGA-II procedure with ES.
The number of irreducible monic polynomials of degree n over F q is the number of aperiodic necklaces, given by Moreau's necklace-counting function M q (n). The closely related necklace function N q (n) counts monic polynomials of degree n which are primary (a power of an irreducible); or alternatively irreducible polynomials of all degrees d ...
A pair of functions (,) is doubly-smooth if + and (+) are both smooth, where (,) is the norm of an element of over , [] is some parameter and + is viewed as an element of the function field of . The sieving step of the algorithm consists of finding doubly-smooth pairs of functions.
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials.The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong.
In abstract algebra, irreducible can be an abbreviation for irreducible element of an integral domain; for example an irreducible polynomial. In representation theory, an irreducible representation is a nontrivial representation with no nontrivial proper subrepresentations. Similarly, an irreducible module is another name for a simple module.
Similarly, over the field of reals, the irreducible factors have degree at most two, while there are polynomials of any degree that are irreducible over the field of rationals Q. The question of polynomial factorization makes sense only for coefficients in a computable field whose every element may be represented in a computer and for which ...
Cohn's irreducibility criterion is a sufficient condition for a polynomial to be irreducible in [] —that is, for it to be unfactorable into the product of lower-degree polynomials with integer coefficients.
There are three types of irreducible real representations of a finite group on a real vector space V, as Schur's lemma implies that the endomorphism ring commuting with the group action is a real associative division algebra and by the Frobenius theorem can only be isomorphic to either the real numbers, or the complex numbers, or the quaternions.