Search results
Results from the WOW.Com Content Network
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
The multiplicative identity of R[x] is the polynomial x 0; that is, x 0 times any polynomial p(x) is just p(x). [2] Also, polynomials can be evaluated by specializing x to a real number. More precisely, for any given real number r, there is a unique unital R-algebra homomorphism ev r : R[x] → R such that ev r (x) = r. Because ev r is unital ...
For instance, the square of the linear polynomial x + 1 is the quadratic polynomial (x + 1) 2 = x 2 + 2x + 1. One of the important properties of squaring, for numbers as well as in many other mathematical systems, is that (for all numbers x), the square of x is the same as the square of its additive inverse −x.
It follows that the solutions of such an equation are exactly the zeros of the function . In other words, a "zero of a function" is precisely a "solution of the equation obtained by equating the function to 0", and the study of zeros of functions is exactly the same as the study of solutions of equations.
The meaning of the expression should be the solution x of the equation =. But in the ring Z /6 Z , 2 is a zero divisor . This equation has two distinct solutions, x = 1 and x = 4 , so the expression 2 2 {\textstyle {\frac {2}{2}}} is undefined .
Hasse principle is the idea that one can find an integer solution to an equation by using the Chinese remainder theorem to piece together solutions modulo powers of each different prime number. Named after Helmut Hasse. Hauser's law is an empirical observation about U.S. tax receipts as a percentage of GDP, theorized to be a natural equilibrium.
The squared Euclidean distance between two points, equal to the sum of squares of the differences between their coordinates Heron's formula for the area of a triangle can be re-written as using the sums of squares of a triangle's sides (and the sums of the squares of squares)
n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n 4 as n tesseracted, hypercubed, zenzizenzic, biquadrate or supercubed instead of “to the power of 4”. The sequence of fourth powers of integers, known as biquadrates or tesseractic ...