Search results
Results from the WOW.Com Content Network
0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add" : a (0) = 0; for n > 0, a ( n ) = a ( n − 1) − n if that number is positive and not already in the sequence, otherwise a ( n ) = a ( n − 1) + n , whether or not that number is already in the sequence.
The total amount to be subtracted is 4 + 8 + 12 + 16 + ⋯, which is 4 times the original series. These relationships can be expressed using algebra. These relationships can be expressed using algebra.
The number 18 is a harshad number in base 10, because the sum of the digits 1 and 8 is 9, and 18 is divisible by 9.; The Hardy–Ramanujan number (1729) is a harshad number in base 10, since it is divisible by 19, the sum of its digits (1729 = 19 × 91).
The values (), …, of the partition function (1, 2, 3, 5, 7, 11, 15, and 22) can be determined by counting the Young diagrams for the partitions of the numbers from 1 to 8. In number theory, the partition function p(n) represents the number of possible partitions of a non-negative integer n.
Terms inside the bracket are evaluated first; hence 2×(3 + 4) is 14, 20 ÷ (5(1 + 1)) is 2 and (2×3) + 4 is 10. This notation is extended to cover more general algebra involving variables: for example (x + y) × (x − y). Square brackets are also often used in place of a second set of parentheses when they are nested—so as to provide a ...
In geometry of the Euclidean plane, the 3-4-6-12 tiling is one of 20 2-uniform tilings of the Euclidean plane by regular polygons, containing regular triangles, squares, hexagons and dodecagons, arranged in two vertex configuration: 3.4.6.4 and 4.6.12.
Discrete objects can often be enumerated by integers; more formally, discrete mathematics has been characterized as the branch of mathematics dealing with countable sets [4] (finite sets or sets with the same cardinality as the natural numbers). However, there is no exact definition of the term "discrete mathematics".
Another type of sphere arises from a 4-ball, whose three-dimensional surface is the 3-sphere: points equidistant to the origin of the euclidean space R 4. If a point has coordinates, P ( x , y , z , w ) , then x 2 + y 2 + z 2 + w 2 = 1 characterizes those points on the unit 3-sphere centered at the origin.