enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discrete exterior calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_exterior_calculus

    In this notation, Stokes' theorem reads as = . In finite element analysis, the first stage is often the approximation of the domain of interest by a triangulation, T. For example, a curve would be approximated as a union of straight line segments; a surface would be approximated by a union of triangles, whose edges are straight line segments ...

  3. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.

  4. Stokes' theorem - Wikipedia

    en.wikipedia.org/wiki/Stokes'_theorem

    An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).

  5. Multivariable calculus - Wikipedia

    en.wikipedia.org/wiki/Multivariable_calculus

    Gradient theorem; Stokes' theorem; Divergence theorem; Green's theorem. In a more advanced study of multivariable calculus, it is seen that these four theorems are specific incarnations of a more general theorem, the generalized Stokes' theorem, which applies to the integration of differential forms over manifolds. [2]

  6. Exterior derivative - Wikipedia

    en.wikipedia.org/wiki/Exterior_derivative

    The theorem of de Rham shows that this map is actually an isomorphism, a far-reaching generalization of the Poincaré lemma. As suggested by the generalized Stokes' theorem, the exterior derivative is the "dual" of the boundary map on singular simplices.

  7. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    By the Kelvin–Stokes theorem we can rewrite the line integrals of the fields around the closed boundary curve ∂Σ to an integral of the "circulation of the fields" (i.e. their curls) over a surface it bounds, i.e. = (), Hence the Ampère–Maxwell law, the modified version of Ampère's circuital law, in integral form can be rewritten as ((+)) =

  8. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Stirling's theorem (mathematical analysis) Stokes's theorem (vector calculus, differential topology) Stolper–Samuelson theorem ; Stolz–Cesàro theorem ; Stone's representation theorem for Boolean algebras (mathematical logic) Stone's theorem on one-parameter unitary groups (functional analysis) Stone–Tukey theorem

  9. Sir George Stokes, 1st Baronet - Wikipedia

    en.wikipedia.org/wiki/Sir_George_Stokes,_1st_Baronet

    Sir George Gabriel Stokes, 1st Baronet, (/ s t oʊ k s /; 13 August 1819 – 1 February 1903) was an Irish mathematician and physicist.Born in County Sligo, Ireland, Stokes spent all of his career at the University of Cambridge, where he was the Lucasian Professor of Mathematics from 1849 until his death in 1903.