Search results
Results from the WOW.Com Content Network
Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering. [3] [4] Computing matrix products is a central operation in all computational applications of linear algebra.
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
A fast FMA can speed up and improve the accuracy of many computations that involve the accumulation of products: Dot product; Matrix multiplication; Polynomial evaluation (e.g., with Horner's rule) Newton's method for evaluating functions (from the inverse function) Convolutions and artificial neural networks; Multiplication in double-double ...
In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m , then their outer product is an n × m matrix.
The product of two quaternionic matrices A and B also follows the usual definition for matrix multiplication. For it to be defined, the number of columns of A must equal the number of rows of B. Then the entry in the ith row and jth column of the product is the dot product of the ith row of the first matrix with the jth column of the second ...
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...
Also, the dot, cross, and dyadic products can all be expressed in matrix form. Dyadic expressions may closely resemble the matrix equivalents. The dot product of a dyadic with a vector gives another vector, and taking the dot product of this result gives a scalar derived from the dyadic.
For the example below, there are four sides: A, B, C and the final result ABC. A is a 10×30 matrix, B is a 30×5 matrix, C is a 5×60 matrix, and the final result is a 10×60 matrix. The regular polygon for this example is a 4-gon, i.e. a square: The matrix product AB is a 10x5 matrix and BC is a 30x60 matrix.