Search results
Results from the WOW.Com Content Network
In category theory, a branch of mathematics, an initial object of a category C is an object I in C such that for every object X in C, there exists precisely one morphism I → X. The dual notion is that of a terminal object (also called terminal element ): T is terminal if for every object X in C there exists exactly one morphism X → T .
If A is an object of C, then the functor from C to Set that sends X to Hom C (X,A) (the set of morphisms in C from X to A) is an example of such a functor. If C is a small category (i.e. the collection of its objects forms a set), then the contravariant functors from C to Set, together with natural transformations as morphisms, form a new ...
That is, a category C is complete if every diagram F : J → C (where J is small) has a limit in C. Dually, a cocomplete category is one in which all small colimits exist. A bicomplete category is a category which is both complete and cocomplete. The existence of all limits (even when J is a proper class) is too strong to be practically relevant.
Universal constructions are functorial in nature: if one can carry out the construction for every object in a category C then one obtains a functor on C. Furthermore, this functor is a right or left adjoint to the functor U used in the definition of the universal property. [2] Universal properties occur everywhere in mathematics.
However, LH does not have a terminal object, and thus is not Cartesian closed. If C has pullbacks and for every arrow p : X → Y, the functor p * : C/Y → C/X given by taking pullbacks has a right adjoint, then C is locally Cartesian closed. If C is locally Cartesian closed, then all of its slice categories C/X are also locally Cartesian closed.
Define the diagonal functor Δ : C → C J as follows: Δ(N) : J → C is the constant functor to N for all N in C. If F is a diagram of type J in C, the following statements are equivalent: ψ is a cone from N to F; ψ is a natural transformation from Δ(N) to F (N, ψ) is an object in the comma category (Δ ↓ F) The dual statements are also ...
In the mathematical discipline of category theory, a strict initial object is an initial object 0 of a category C with the property that every morphism in C with codomain 0 is an isomorphism. In a Cartesian closed category, every initial object is strict. [1] Also, if C is a distributive or extensive category, then the initial object 0 of C is ...
All of the above examples may be regarded as special cases of the following very general construction, which works in any category C satisfying: For any objects A and B of C, their coproduct exists in C; For any morphisms j and k of C with the same domain and the same target, the coequalizer of j and k exists in C.