enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Initial and terminal objects - Wikipedia

    en.wikipedia.org/wiki/Initial_and_terminal_objects

    In category theory, a branch of mathematics, an initial object of a category C is an object I in C such that for every object X in C, there exists precisely one morphism I → X. The dual notion is that of a terminal object (also called terminal element ): T is terminal if for every object X in C there exists exactly one morphism X → T .

  3. Complete category - Wikipedia

    en.wikipedia.org/wiki/Complete_category

    That is, a category C is complete if every diagram F : J → C (where J is small) has a limit in C. Dually, a cocomplete category is one in which all small colimits exist. A bicomplete category is a category which is both complete and cocomplete. The existence of all limits (even when J is a proper class) is too strong to be practically relevant.

  4. Universal property - Wikipedia

    en.wikipedia.org/wiki/Universal_property

    Universal constructions are functorial in nature: if one can carry out the construction for every object in a category C then one obtains a functor on C. Furthermore, this functor is a right or left adjoint to the functor U used in the definition of the universal property. [2] Universal properties occur everywhere in mathematics.

  5. Limit (category theory) - Wikipedia

    en.wikipedia.org/wiki/Limit_(category_theory)

    Given a diagram F: J → C (thought of as an object in C J), a natural transformation ψ : Δ(N) → F (which is just a morphism in the category C J) is the same thing as a cone from N to F. To see this, first note that Δ(N)(X) = N for all X implies that the components of ψ are morphisms ψ X : N → F(X), which all share the domain N.

  6. Cone (category theory) - Wikipedia

    en.wikipedia.org/wiki/Cone_(category_theory)

    Define the diagonal functor Δ : CC J as follows: Δ(N) : J → C is the constant functor to N for all N in C. If F is a diagram of type J in C, the following statements are equivalent: ψ is a cone from N to F; ψ is a natural transformation from Δ(N) to F (N, ψ) is an object in the comma category (Δ ↓ F) The dual statements are also ...

  7. Monoid (category theory) - Wikipedia

    en.wikipedia.org/wiki/Monoid_(category_theory)

    A monoid object in [C, C] is a monad on C. For any category with a terminal object and finite products, every object becomes a comonoid object via the diagonal morphism Δ X : X → X × X. Dually in a category with an initial object and finite coproducts every object becomes a monoid object via id X ⊔ id X : X ⊔ X → X.

  8. Category of small categories - Wikipedia

    en.wikipedia.org/wiki/Category_of_small_categories

    The initial object of Cat is the empty category 0, which is the category of no objects and no morphisms. [1] The terminal object is the terminal category or trivial category 1 with a single object and morphism. [2] The category Cat is itself a large category, and therefore not an object of itself. In order to avoid problems analogous to Russell ...

  9. Cartesian closed category - Wikipedia

    en.wikipedia.org/wiki/Cartesian_closed_category

    However, LH does not have a terminal object, and thus is not Cartesian closed. If C has pullbacks and for every arrow p : X → Y, the functor p * : C/Y → C/X given by taking pullbacks has a right adjoint, then C is locally Cartesian closed. If C is locally Cartesian closed, then all of its slice categories C/X are also locally Cartesian closed.