enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Initial and terminal objects - Wikipedia

    en.wikipedia.org/wiki/Initial_and_terminal_objects

    For example, the initial object in any concrete category with free objects will be the free object generated by the empty set (since the free functor, being left adjoint to the forgetful functor to Set, preserves colimits). Initial and terminal objects may also be characterized in terms of universal properties and adjoint functors.

  3. Complete category - Wikipedia

    en.wikipedia.org/wiki/Complete_category

    That is, a category C is complete if every diagram F : J → C (where J is small) has a limit in C. Dually, a cocomplete category is one in which all small colimits exist. A bicomplete category is a category which is both complete and cocomplete. The existence of all limits (even when J is a proper class) is too strong to be practically relevant.

  4. Cone (category theory) - Wikipedia

    en.wikipedia.org/wiki/Cone_(category_theory)

    Define the diagonal functor Δ : CC J as follows: Δ(N) : J → C is the constant functor to N for all N in C. If F is a diagram of type J in C, the following statements are equivalent: ψ is a cone from N to F; ψ is a natural transformation from Δ(N) to F (N, ψ) is an object in the comma category (Δ ↓ F) The dual statements are also ...

  5. Limit (category theory) - Wikipedia

    en.wikipedia.org/wiki/Limit_(category_theory)

    Given a diagram F: J → C (thought of as an object in C J), a natural transformation ψ : Δ(N) → F (which is just a morphism in the category C J) is the same thing as a cone from N to F. To see this, first note that Δ(N)(X) = N for all X implies that the components of ψ are morphisms ψ X : N → F(X), which all share the domain N.

  6. Monoid (category theory) - Wikipedia

    en.wikipedia.org/wiki/Monoid_(category_theory)

    A monoid object in [C, C] is a monad on C. For any category with a terminal object and finite products, every object becomes a comonoid object via the diagonal morphism Δ X : X → X × X. Dually in a category with an initial object and finite coproducts every object becomes a monoid object via id X ⊔ id X : X ⊔ X → X.

  7. Cartesian closed category - Wikipedia

    en.wikipedia.org/wiki/Cartesian_closed_category

    However, LH does not have a terminal object, and thus is not Cartesian closed. If C has pullbacks and for every arrow p : X → Y, the functor p * : C/Y → C/X given by taking pullbacks has a right adjoint, then C is locally Cartesian closed. If C is locally Cartesian closed, then all of its slice categories C/X are also locally Cartesian closed.

  8. Zero ring - Wikipedia

    en.wikipedia.org/wiki/Zero_ring

    Download as PDF; Printable version; ... whereas the ring of integers Z is the initial object. Definition ... Thus the zero ring is a terminal object in the category ...

  9. Universal property - Wikipedia

    en.wikipedia.org/wiki/Universal_property

    Universal constructions are functorial in nature: if one can carry out the construction for every object in a category C then one obtains a functor on C. Furthermore, this functor is a right or left adjoint to the functor U used in the definition of the universal property. [2] Universal properties occur everywhere in mathematics.