Search results
Results from the WOW.Com Content Network
PyMC (formerly known as PyMC3) is a probabilistic programming language written in Python. It can be used for Bayesian statistical modeling and probabilistic machine learning. PyMC performs inference based on advanced Markov chain Monte Carlo and/or variational fitting algorithms.
A Bayes filter is an algorithm used in computer science for calculating the probabilities of multiple beliefs to allow a robot to infer its position and orientation. Essentially, Bayes filters allow robots to continuously update their most likely position within a coordinate system, based on the most recently acquired sensor data.
ArviZ also provides a common data structure for manipulating and storing data commonly arising in Bayesian analysis, like posterior samples or observed data. ArviZ is an open source project, developed by the community and is an affiliated project of NumFOCUS .
Bayes' theorem is named after Thomas Bayes (/ b eɪ z /), a minister, statistician, and philosopher. Bayes used conditional probability to provide an algorithm (his Proposition 9) that uses evidence to calculate limits on an unknown parameter. His work was published in 1763 as An Essay Towards Solving a Problem in the Doctrine of Chances.
Naive Bayes is a simple technique for constructing classifiers: models that assign class labels to problem instances, represented as vectors of feature values, where the class labels are drawn from some finite set.
Bayesian statistics (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a theory in the field of statistics based on the Bayesian interpretation of probability, where probability expresses a degree of belief in an event.
Engine for Likelihood-Free Inference. ELFI is a statistical software package written in Python for Approximate Bayesian Computation (ABC), also known e.g. as likelihood-free inference, simulator-based inference, approximative Bayesian inference etc. [83] ABCpy: Python package for ABC and other likelihood-free inference schemes.
It is an alternative to methods from the Bayesian literature [3] such as bridge sampling and defensive importance sampling. Here is a simple version of the nested sampling algorithm, followed by a description of how it computes the marginal probability density Z = P ( D ∣ M ) {\displaystyle Z=P(D\mid M)} where M {\displaystyle M} is M 1 ...