enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    The heat transfer coefficient is the reciprocal of thermal insulance. This is used for building materials and for clothing insulation. There are numerous methods for calculating the heat transfer coefficient in different heat transfer modes, different fluids, flow regimes, and under different thermohydraulic conditions.

  3. Rate of heat flow - Wikipedia

    en.wikipedia.org/wiki/Rate_of_heat_flow

    The rate of heat flow is the amount of heat that is transferred per unit of time in some material, usually measured in watts (joules per second). Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot ...

  4. Heisler chart - Wikipedia

    en.wikipedia.org/wiki/Heisler_Chart

    The third chart in each set was supplemented by Gröber in 1961, and this particular one shows the dimensionless heat transferred from the wall as a function of a dimensionless time variable. The vertical axis is a plot of Q/Q o, the ratio of actual heat transfer to the amount of total possible heat transfer before T = T ∞.

  5. Thermal conduction - Wikipedia

    en.wikipedia.org/wiki/Thermal_conduction

    This equation shows that the temperature decreases exponentially over time, with the rate governed by the properties of the material and the heat transfer coefficient. [7] The heat transfer coefficient, h, is measured in , and represents the transfer of heat at an interface between two materials. This value is different at every interface and ...

  6. Churchill–Bernstein equation - Wikipedia

    en.wikipedia.org/wiki/Churchill–Bernstein_equation

    The equation yields the surface averaged Nusselt number, which is used to determine the average convective heat transfer coefficient. Newton's law of cooling (in the form of heat loss per surface area being equal to heat transfer coefficient multiplied by temperature gradient) can then be invoked to determine the heat loss or gain from the ...

  7. Thermal conductivity and resistivity - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductivity_and...

    In alloys the change in electrical conductivity is usually smaller and thus thermal conductivity increases with temperature, often proportionally to temperature. Many pure metals have a peak thermal conductivity between 2 K and 10 K. On the other hand, heat conductivity in nonmetals is mainly due to lattice vibrations . Except for high-quality ...

  8. Heat transfer - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer

    Thermodynamic and mechanical heat transfer is calculated with the heat transfer coefficient, the proportionality between the heat flux and the thermodynamic driving force for the flow of heat. Heat flux is a quantitative, vectorial representation of heat flow through a surface. [3]

  9. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    newton (N = kg⋅m⋅s −2) L M T −2: extensive, vector Frequency: f: Number of (periodic) occurrences per unit time hertz (Hz = s −1) T −1: scalar Half-life: t 1/2: Time for a quantity to decay to half its initial value s T: Heat: Q: Thermal energy: joule (J) L 2 M T −2: Heat capacity: C p: Energy per unit temperature change J/K L 2 M ...