Search results
Results from the WOW.Com Content Network
The Cauchy distribution, an example of a distribution which does not have an expected value or a variance. In physics it is usually called a Lorentzian profile, and is associated with many processes, including resonance energy distribution, impact and natural spectral line broadening and quadratic stark line broadening.
Joint and marginal distributions of a pair of discrete random variables, X and Y, dependent, thus having nonzero mutual information I(X; Y). The values of the joint distribution are in the 3×4 rectangle; the values of the marginal distributions are along the right and bottom margins.
In this section we show that the order statistics of the uniform distribution on the unit interval have marginal distributions belonging to the beta distribution family. We also give a simple method to derive the joint distribution of any number of order statistics, and finally translate these results to arbitrary continuous distributions using ...
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
Generalized extreme value distribution; Generalized gamma distribution; Generalized integer gamma distribution; Generalized inverse Gaussian distribution; Generalized logistic distribution; Generalized multivariate log-gamma distribution; Generalized normal distribution; Generalized Pareto distribution; Geometric stable distribution; Gompertz ...
The conditional distribution contrasts with the marginal distribution of a random variable, which is its distribution without reference to the value of the other variable. If the conditional distribution of Y {\displaystyle Y} given X {\displaystyle X} is a continuous distribution , then its probability density function is known as the ...
In probability theory and statistics, the moment-generating function of a real-valued random variable is an alternative specification of its probability distribution.Thus, it provides the basis of an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions.
The characteristic function + = ((+)) of the sum of two independent random variables X and Y is just the product of the two separate characteristic functions: = (), = ()