Search results
Results from the WOW.Com Content Network
The example mapping f happens to correspond to the example enumeration s in the picture above. A generalized form of the diagonal argument was used by Cantor to prove Cantor's theorem: for every set S, the power set of S—that is, the set of all subsets of S (here written as P(S))—cannot be in bijection with S itself. This proof proceeds as ...
But Cantor's theorem proves that power sets are strictly greater than the sets they are constructed from. Consequently, the set of all sets would contain a subset greater than itself. Galileo's paradox: Though most numbers are not squares, there are no more numbers than squares. (See also Cantor's diagonal argument)
In the same year the French mathematician Jules Richard used a variant of Cantor's diagonal method to obtain another contradiction in naive set theory. Consider the set A of all finite agglomerations of words. The set E of all finite definitions of real numbers is a subset of A.
The best known example of an uncountable set is the set of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...
Cantor's theorem and its proof are closely related to two paradoxes of set theory. Cantor's paradox is the name given to a contradiction following from Cantor's theorem together with the assumption that there is a set containing all sets, the universal set. In order to distinguish this paradox from the next one discussed below, it is important ...
This is known as Cantor's theorem. The argument below is a modern version of Cantor's argument that uses power sets (for his original argument, see Cantor's diagonal argument). By presenting a modern argument, it is possible to see which assumptions of axiomatic set theory are used.
In mathematics, Lawvere's fixed-point theorem is an important result in category theory. [1] It is a broad abstract generalization of many diagonal arguments in mathematics and logic, such as Cantor's diagonal argument, Cantor's theorem, Russell's paradox, Gödel's first incompleteness theorem, Turing's solution to the Entscheidungsproblem, and Tarski's undefinability theorem.
Diagonal argument can refer to: Diagonal argument (proof technique), proof techniques used in mathematics. A diagonal argument, in mathematics, is a technique employed in the proofs of the following theorems: Cantor's diagonal argument (the earliest) Cantor's theorem; Russell's paradox; Diagonal lemma. Gödel's first incompleteness theorem