Search results
Results from the WOW.Com Content Network
In computer science, a 2–3 tree is a tree data structure, where every node with children (internal node) has either two children (2-node) and one data element or three children (3-node) and two data elements. A 2–3 tree is a B-tree of order 3. [1] Nodes on the outside of the tree have no children and one or two data elements.
To turn a regular search tree into an order statistic tree, the nodes of the tree need to store one additional value, which is the size of the subtree rooted at that node (i.e., the number of nodes below it). All operations that modify the tree must adjust this information to preserve the invariant that size[x] = size[left[x]] + size[right[x]] + 1
The term B-tree may refer to a specific design or a general class of designs. In the narrow sense, a B-tree stores keys in its internal nodes but need not store those keys in the records at the leaves. The general class includes variations such as the B+ tree, the B * tree and the B *+ tree.
In computer science, instruction selection is the stage of a compiler backend that transforms its middle-level intermediate representation (IR) into a low-level IR. In a typical compiler, instruction selection precedes both instruction scheduling and register allocation; hence its output IR has an infinite set of pseudo-registers (often known as temporaries) and may still be – and typically ...
A B+ tree consists of a root, internal nodes and leaves. [1] The root may be either a leaf or a node with two or more children. A B+ tree can be viewed as a B-tree in which each node contains only keys (not key–value pairs), and to which an additional level is added at the bottom with linked leaves.
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
Let T be a node of an ordered tree, and let B denote T's image in the corresponding binary tree. Then B's left child represents T's first child, while the B's right child represents T's next sibling. For example, the ordered tree on the left and the binary tree on the right correspond: An example of converting an n-ary tree to a binary tree
A BSP tree is traversed in a linear time, in an order determined by the particular function of the tree. Again using the example of rendering double-sided polygons using the painter's algorithm, to draw a polygon P correctly requires that all polygons behind the plane P lies in must be drawn first, then polygon P, then finally the polygons in ...