enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ordination (statistics) - Wikipedia

    en.wikipedia.org/wiki/Ordination_(statistics)

    Ordination or gradient analysis, in multivariate analysis, is a method complementary to data clustering, and used mainly in exploratory data analysis (rather than in hypothesis testing). In contrast to cluster analysis, ordination orders quantities in a (usually lower-dimensional) latent space. In the ordination space, quantities that are near ...

  3. Gradient pattern analysis - Wikipedia

    en.wikipedia.org/wiki/Gradient_pattern_analysis

    Gradient pattern analysis (GPA) [1] is a geometric computing method for characterizing geometrical bilateral symmetry breaking of an ensemble of symmetric vectors regularly distributed in a square lattice. Usually, the lattice of vectors represent the first-order gradient of a scalar field, here an M x M square amplitude matrix.

  4. Gradsect - Wikipedia

    en.wikipedia.org/wiki/Gradsect

    A gradsect or gradient-directed transect is a low-input, high-return sampling method where the aim is to maximise information about the distribution of biota in any area of study. Most living things are rarely distributed at random , their placement being largely determined by a hierarchy of environmental factors.

  5. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    The gradient thus does not vanish in arbitrarily deep networks. Feedforward networks with residual connections can be regarded as an ensemble of relatively shallow nets. In this perspective, they resolve the vanishing gradient problem by being equivalent to ensembles of many shallow networks, for which there is no vanishing gradient problem. [17]

  6. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The curl of the gradient of any continuously twice-differentiable scalar field (i.e., differentiability class) is always the zero vector: =. It can be easily proved by expressing ∇ × ( ∇ φ ) {\displaystyle \nabla \times (\nabla \varphi )} in a Cartesian coordinate system with Schwarz's theorem (also called Clairaut's theorem on equality ...

  7. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    A red arrow originating at a point shows the direction of the negative gradient at that point. Note that the (negative) gradient at a point is orthogonal to the contour line going through that point. We see that gradient descent leads us to the bottom of the bowl, that is, to the point where the value of the function is minimal.

  8. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    The gradient of F is then normal to the hypersurface. Similarly, an affine algebraic hypersurface may be defined by an equation F(x 1, ..., x n) = 0, where F is a polynomial. The gradient of F is zero at a singular point of the hypersurface (this is the definition of a singular point). At a non-singular point, it is a nonzero normal vector.

  9. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.