Search results
Results from the WOW.Com Content Network
Technological convergence is the tendency for technologies that were originally unrelated to become more closely integrated and even unified as they develop and advance. For example, watches, telephones, television, computers, and social media platforms began as separate and mostly unrelated technologies, but have converged in many ways into an interrelated telecommunication, media, and ...
The different notions of convergence capture different properties about the sequence, with some notions of convergence being stronger than others. For example, convergence in distribution tells us about the limit distribution of a sequence of random variables. This is a weaker notion than convergence in probability, which tells us about the ...
To demonstrate this algorithm, here is an example of how it can be used to find the value of . Note that since < <, the first interval for the algorithm can be defined as:= [,], since must certainly found within this interval. Thus, using this interval, one can continue to the next step of the algorithm by calculating the midpoint of the ...
In numerical analysis, fixed-point iteration is a method of computing fixed points of a function.. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is + = (), =,,, … which gives rise to the sequence,,, … of iterated function applications , (), (()), … which is hoped to converge to a point .
For example, the secant method, when converging to a regular, simple root, has an order of the golden ratio φ ≈ 1.618. [6] The common names for integer orders of convergence connect to asymptotic big O notation, where the convergence of the quotient implies | + | = (| |).
Convergence may be understood in different ways, e.g. pointwise, uniform or in some integral norm. The situation is rather bad for equidistant nodes, in that uniform convergence is not even guaranteed for infinitely differentiable functions. One classical example, due to Carl Runge, is the function f(x) = 1 / (1 + x 2) on the interval [−5, 5].
A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).
In general, the most common criteria for pointwise convergence of a periodic function f are as follows: If f satisfies a Holder condition, then its Fourier series converges uniformly. [5] If f is of bounded variation, then its Fourier series converges everywhere. If f is additionally continuous, the convergence is uniform. [6]