Search results
Results from the WOW.Com Content Network
The newton (symbol: N) is the unit of force in the International System of Units (SI). Expressed in terms of SI base units, it is 1 kg⋅m/s 2, the force that accelerates a mass of one kilogram at one metre per second squared. The unit is named after Isaac Newton in recognition of his work on classical mechanics, specifically his second law of ...
In unit systems where force is a derived unit, like in SI units, g c is equal to 1. In unit systems where force is a primary unit, like in imperial and US customary measurement systems , g c may or may not equal 1 depending on the units used, and value other than 1 may be required to obtain correct results. [ 2 ]
A similar system, termed British Engineering Units by Halliday and Resnick (1974), is a system that uses the slug as the unit of mass, and in which Newton's law retains the form F = ma. [5] Modern British engineering practice has used SI base units since at least the late 1970s. [6]
By assuming a form of Coulomb's law in which the Coulomb constant k e is taken as unity, Maxwell then determined that the dimensions of an electrostatic unit of charge were Q = T −1 L 3/2 M 1/2, [15] which, after substituting his M = T −2 L 3 equation for mass, results in charge having the same dimensions as mass, viz. Q = T −2 L 3.
The undecimogramme is a unit of mass equal to ten picograms (10 pg). The gamma (γ) is a unit of mass equal to one microgram (1 μg). The gravet is a unit of mass equal to one gram (1 g). The grave is a unit of mass equal to one kilogram (1 kg). The bar is a unit of mass equal to one megagram (1 Mg).
The SI unit of force is the newton (symbol N), which is the force required to accelerate a one kilogram mass at a rate of one meter per second squared, or kg·m·s −2.The corresponding CGS unit is the dyne, the force required to accelerate a one gram mass by one centimeter per second squared, or g·cm·s −2. A newton is thus equal to ...
L kilogram: kg mass "The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15 × 10 −34 when expressed in the unit J s, which is equal to kg m 2 s −1, where the metre and the second are defined in terms of c and ∆ν Cs." [1]
L 2 M T −2 I −1: scalar Mass fraction: x: Mass of a substance as a fraction of the total mass kg/kg 1: intensive (Mass) Density (or volume density) ρ: Mass per unit volume kg/m 3: L −3 M: intensive Mean lifetime: τ: Average time for a particle of a substance to decay s T: intensive Molar concentration: C: Amount of substance per unit ...