Search results
Results from the WOW.Com Content Network
For example, sulfuric acid (H 2 SO 4) is a diprotic acid. Since only 0.5 mol of H 2 SO 4 are needed to neutralize 1 mol of OH −, the equivalence factor is: f eq (H 2 SO 4) = 0.5. If the concentration of a sulfuric acid solution is c(H 2 SO 4) = 1 mol/L, then its normality is 2 N. It can also be called a "2 normal" solution.
m(NaCl) = 2 mol/L × 0.1 L × 58 g/mol = 11.6 g. To create the solution, 11.6 g NaCl is placed in a volumetric flask, dissolved in some water, then followed by the addition of more water until the total volume reaches 100 mL. The density of water is approximately 1000 g/L and its molar mass is 18.02 g/mol (or 1/18.02 = 0.055 mol/g). Therefore ...
Although nearly 100% sulfuric acid solutions can be made, the subsequent loss of SO 3 at the boiling point brings the concentration to 98.3% acid. The 98.3% grade, which is more stable in storage, is the usual form of what is described as "concentrated sulfuric acid".
2 NH 3 + H 2 SO 4 → (NH 4) 2 SO 4. A mixture of ammonia gas and water vapor is introduced into a reactor that contains a saturated solution of ammonium sulfate and about 2% to 4% of free sulfuric acid at 60 °C. Concentrated sulfuric acid is added to keep the solution acidic, and to retain its level of free acid.
A typical mixture is 3 parts of concentrated sulfuric acid and 1 part of 30 wt. % hydrogen peroxide solution; [1] other protocols may use a 4:1 or even 7:1 mixture. A closely related mixture, sometimes called "base piranha", is a 5:1:1 mixture of water, ammonia solution ( NH 4 OH , or NH 3 (aq) ), and 30% hydrogen peroxide.
If this convention is used, then the values are in the same range as monovalent ions, e.g. 59.5 S cm 2 mol −1 for 1 / 2 Ca 2+ and 80.0 S cm 2 mol −1 for 1 / 2 SO 2− 4. [4] From the ionic molar conductivities of cations and anions, effective ionic radii can be calculated using the concept of Stokes radius.
The temperature of the solution eventually decreases to match that of the surroundings. The equilibrium, between the gas as a separate phase and the gas in solution, will by Le Châtelier's principle shift to favour the gas going into solution as the temperature is decreased (decreasing the temperature increases the solubility of a gas).
For example, from Fe 2+ + 2 e − ⇌ Fe(s) (–0.44 V), the energy to form one neutral atom of Fe(s) from one Fe 2+ ion and two electrons is 2 × 0.44 eV = 0.88 eV, or 84 907 J/(mol e −). That value is also the standard formation energy (∆ G f °) for an Fe 2+ ion, since e − and Fe( s ) both have zero formation energy.