Search results
Results from the WOW.Com Content Network
Fractionation makes it possible to isolate more than two components in a mixture in a single run. This property sets it apart from other separation techniques. Fractionation is widely employed in many branches of science and technology. Mixtures of liquids and gasses are separated by fractional distillation by difference
A separation process is a method that converts a mixture or a solution of chemical substances into two or more distinct product mixtures, [1] a scientific process of separating two or more substances in order to obtain purity. At least one product mixture from the separation is enriched in one or more of the source mixture's constituents.
Acid–base extraction is a subclass of liquid–liquid extractions and involves the separation of chemical species from other acidic or basic compounds. [1] It is typically performed during the work-up step following a chemical synthesis to purify crude compounds [2] and results in the product being largely free of acidic or basic impurities.
In a laboratory setting, mixture of dissolved materials are typically fed using a solvent into a column packed with an appropriate adsorbent, and due to different affinities for solvent (moving phase) versus adsorbent (stationary phase) the components in the original mixture pass through the column in the moving phase at different rates, which ...
Homogeneous mixtures can be separated by molecular separation processes; these are either equilibrium-based or rate-controlled. Equilibrium-based processes are operating by the formation of two immiscible phases with different compositions at equilibrium, an example is distillation (in distillation the vapor has another composition than the ...
High-performance liquid chromatography (HPLC), formerly referred to as high-pressure liquid chromatography, is a technique in analytical chemistry used to separate, identify, and quantify specific components in mixtures. The mixtures can originate from food, chemicals, pharmaceuticals, [1] biological, environmental and agriculture, etc., which ...
[8] [9] Mixtures differ from chemical compounds in the following ways: The substances in a mixture can be separated using physical methods such as filtration, freezing, and distillation. There is little or no energy change when a mixture forms (see Enthalpy of mixing). The substances in a mixture keep their separate properties.
Mixtures contain more than one chemical substance, and they do not have a fixed composition. Butter, soil and wood are common examples of mixtures. Sometimes, mixtures can be separated into their component substances by mechanical processes, such as chromatography, distillation, or evaporation. [13]