enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Molar volume - Wikipedia

    en.wikipedia.org/wiki/Molar_volume

    The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1mol1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...

  3. Mole (unit) - Wikipedia

    en.wikipedia.org/wiki/Mole_(unit)

    One lb-mol is equal to 453.592 37 g‑mol, [6] which is the same numerical value as the number of grams in an international avoirdupois pound. Greenhouse and growth chamber lighting for plants is sometimes expressed in micromoles per square metre per second, where 1 mol photons ≈ 6.02 × 10 23 photons. [7]

  4. Avogadro's law - Wikipedia

    en.wikipedia.org/wiki/Avogadro's_Law

    V is the volume of the gas; n is the amount of substance of the gas (measured in moles); k is a constant for a given temperature and pressure. This law describes how, under the same condition of temperature and pressure, equal volumes of all gases contain the same number of molecules. For comparing the same substance under two different sets of ...

  5. Ideal gas - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas

    n is the amount of substance of the gas (in moles) T is the absolute temperature; R is the gas constant, which must be expressed in units consistent with those chosen for pressure, volume and temperature. For example, in SI units R = 8.3145 J⋅K −1mol1 when pressure is expressed in pascals, volume in cubic meters, and absolute ...

  6. Standard temperature and pressure - Wikipedia

    en.wikipedia.org/wiki/Standard_temperature_and...

    The molar volume of gases around STP and at atmospheric pressure can be calculated with an accuracy that is usually sufficient by using the ideal gas law. The molar volume of any ideal gas may be calculated at various standard reference conditions as shown below: V m = 8.3145 × 273.15 / 101.325 = 22.414 dm 3 /mol at 0 °C and 101.325 kPa

  7. Hydrogen - Wikipedia

    en.wikipedia.org/wiki/Hydrogen

    It is the lightest element and, at standard conditions, is a gas of diatomic molecules with the formula H 2, sometimes called dihydrogen, [11] hydrogen gas, molecular hydrogen, or simply hydrogen. It is colorless, odorless, [ 12 ] non-toxic, and highly combustible .

  8. Specific volume - Wikipedia

    en.wikipedia.org/wiki/Specific_volume

    Specific volume is commonly applied to: Molar volume; Volume (thermodynamics) Partial molar volume; Imagine a variable-volume, airtight chamber containing a certain number of atoms of oxygen gas. Consider the following four examples: If the chamber is made smaller without allowing gas in or out, the density increases and the specific volume ...

  9. Amount of substance - Wikipedia

    en.wikipedia.org/wiki/Amount_of_substance

    Historically, the mole was defined as the amount of substance in 12 grams of the carbon-12 isotope.As a consequence, the mass of one mole of a chemical compound, in grams, is numerically equal (for all practical purposes) to the mass of one molecule or formula unit of the compound, in daltons, and the molar mass of an isotope in grams per mole is approximately equal to the mass number ...