enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    It is necessary either to supply an activation energy or to lower the intrinsic activation energy of the system, in order to make most biochemical reactions proceed at a useful rate. Living systems use complex macromolecular structures to lower the activation energies of biochemical reactions.

  3. Fractionation of carbon isotopes in oxygenic photosynthesis

    en.wikipedia.org/wiki/Fractionation_of_carbon...

    Under kinetic conditions, such as an enzymatic reaction with RuBisCO, the lighter isotope is favored because of a lower activation energy. Oxygenic photosynthesis is a metabolic pathway facilitated by autotrophs, including plants, algae, and cyanobacteria. This pathway converts inorganic carbon dioxide from the atmosphere or aquatic environment ...

  4. RuBisCO - Wikipedia

    en.wikipedia.org/wiki/RuBisCo

    RuBisCO is important biologically because it catalyzes the primary chemical reaction by which inorganic carbon enters the biosphere.While many autotrophic bacteria and archaea fix carbon via the reductive acetyl CoA pathway, the 3-hydroxypropionate cycle, or the reverse Krebs cycle, these pathways are relatively small contributors to global carbon fixation compared to that catalyzed by RuBisCO.

  5. Photosystem II - Wikipedia

    en.wikipedia.org/wiki/Photosystem_II

    The energized electrons transferred to plastoquinone are ultimately used to reduce NADP + to NADPH or are used in non-cyclic electron flow. [1] DCMU is a chemical often used in laboratory settings to inhibit photosynthesis. When present, DCMU inhibits electron flow from photosystem II to plastoquinone.

  6. Calvin cycle - Wikipedia

    en.wikipedia.org/wiki/Calvin_cycle

    The enzymes in the Calvin cycle are functionally equivalent to most enzymes used in other metabolic pathways such as gluconeogenesis and the pentose phosphate pathway, but the enzymes in the Calvin cycle are found in the chloroplast stroma instead of the cell cytosol, separating the reactions. They are activated in the light (which is why the ...

  7. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    The electron in the higher energy level is unstable and will quickly return to its normal lower energy level. To do this, it must release the absorbed energy. This can happen in various ways. The extra energy can be converted into molecular motion and lost as heat, or re-emitted by the electron as light (fluorescence).

  8. Enzyme - Wikipedia

    en.wikipedia.org/wiki/Enzyme

    Uncatalysed (dashed line), substrates need a lot of activation energy to reach a transition state, which then decays into lower-energy products. When enzyme catalysed (solid line), the enzyme binds the substrates (ES), then stabilizes the transition state (ES ‡) to reduce the activation energy required to produce products (EP) which are ...

  9. Enzyme catalysis - Wikipedia

    en.wikipedia.org/wiki/Enzyme_catalysis

    The binding energy of the enzyme-substrate complex cannot be considered as an external energy which is necessary for the substrate activation. The enzyme of high energy content may firstly transfer some specific energetic group X 1 from catalytic site of the enzyme to the final place of the first bound reactant, then another group X 2 from the ...