Search results
Results from the WOW.Com Content Network
Centroid of a triangle. In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. [further explanation needed] The same definition extends to any object in -dimensional Euclidean space. [1]
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object X {\displaystyle X} in n {\displaystyle n} - dimensional space is the intersection of all hyperplanes that divide X {\displaystyle X} into two parts of equal moment about the hyperplane.
This invariance is the defining property of a triangle center. It rules out other well-known points such as the Brocard points which are not invariant under reflection and so fail to qualify as triangle centers. For an equilateral triangle, all triangle centers coincide at its centroid. However the triangle centers generally take different ...
In geometry, the Euler line, named after Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər), is a line determined from any triangle that is not equilateral.It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.
Triangles and their properties were the subject of investigation since at least the time of Euclid. In fact, Euclid's Elements contains description of the four special points – centroid, incenter, circumcenter and orthocenter - associated with a triangle.
The Nagel point is the isotomic conjugate of the Gergonne point.The Nagel point, the centroid, and the incenter are collinear on a line called the Nagel line.The incenter is the Nagel point of the medial triangle; [2] [3] equivalently, the Nagel point is the incenter of the anticomplementary triangle.
Several special points of a triangle are often described as triangle centres: the circumcentre, which is the centre of the circle that passes through all three vertices; the centroid or centre of mass, the point on which the triangle would balance if it had uniform density;
The nine-point center lies at the centroid of four points: the triangle's three vertices and its orthocenter. [ 7 ] The Euler lines of the four triangles formed by an orthocentric system (a set of four points such that each is the orthocenter of the triangle with vertices at the other three points) are concurrent at the nine-point center common ...