Search results
Results from the WOW.Com Content Network
DDR4 speeds are advertised as double the base clock rate due to its Double Data Rate (DDR) nature, with common speeds including DDR4-2400 and DDR4-3200, and higher speeds like DDR4-4266 and DDR4-5000 available at a premium. Unlike DDR3, DDR4 does not have a low voltage variant; it consistently operates at 1.2 V. Additionally, DDR4 improves on ...
DDR SDRAM operating with a 100 MHz clock is called DDR-200 (after its 200 MT/s data transfer rate), and a 64-bit (8-byte) wide DIMM operated at that data rate is called PC-1600, after its 1600 MB/s peak (theoretical) bandwidth. Likewise, 12.8 GB/s transfer rate DDR3-1600 is called PC3-12800. Some examples of popular designations of DDR modules:
The figures below are simplex data rates, which may conflict with the duplex rates vendors sometimes use in promotional materials. Where two values are listed, the first value is the downstream rate and the second value is the upstream rate. The use of decimal prefixes is standard in data communications.
The 8n prefetch architecture is combined with an interface designed to transfer two data words per clock cycle at the I/O pins. A single read or write operation for the DDR4 SDRAM consists of a single 8n-bit-wide 4-clock data transfer at the internal DRAM core and 8 corresponding n-bit-wide half-clock-cycle data transfers at the I/O pins. [20]
DDR3 and DDR4 use A12 during read and write command to indicate "burst chop", half-length data transfer; DDR4 changes the encoding of the activate command. A new signal ACT controls it, during which the other control lines are used as row address bits 16, 15 and 14. When ACT is high, other commands are the same as above.
Connect:Direct—originally named Network Data Mover (NDM)—is a computer software product that transfers files between mainframe computers and/or midrange computers.It was developed for mainframes, with other platforms being added as the product grew.
What determines absolute latency (and thus system performance) is determined by both the timings and the memory clock frequency. When translating memory timings into actual latency, timings are in units of clock cycles, which for double data rate memory is half the speed of the commonly quoted transfer rate. Without knowing the clock frequency ...
Data is spread amongst the modules in an alternating pattern, potentially tripling available memory bandwidth for the same amount of data, as opposed to storing it all on one module. The architecture can only be used when all three, or a multiple of three, memory modules are identical in capacity and speed, and are placed in three-channel slots.