enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heat - Wikipedia

    en.wikipedia.org/wiki/Heat

    The water and the ice were both evenly heated to 40 °F by the air in the room, which was at a constant 47 °F (8 °C). The water had therefore received 40 – 33 = 7 “degrees of heat”. The ice had been heated for 21 times longer and had therefore received 7 × 21 = 147 “degrees of heat”.

  3. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.

  4. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    Scots-Irish physicist Lord Kelvin was the first to formulate a concise definition of thermodynamics in 1854 [2] which stated, "Thermo-dynamics is the subject of the relation of heat to forces acting between contiguous parts of bodies, and the relation of heat to electrical agency."

  5. State function - Wikipedia

    en.wikipedia.org/wiki/State_function

    In the thermodynamics of equilibrium, a state function, function of state, or point function for a thermodynamic system is a mathematical function relating several state variables or state quantities (that describe equilibrium states of a system) that depend only on the current equilibrium thermodynamic state of the system [1] (e.g. gas, liquid, solid, crystal, or emulsion), not the path which ...

  6. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    The heat equation is also widely used in image analysis (Perona & Malik 1990) and in machine learning as the driving theory behind scale-space or graph Laplacian methods. The heat equation can be efficiently solved numerically using the implicit Crank–Nicolson method of (Crank & Nicolson 1947).

  7. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    [1] [2] [3] A more fundamental statement was later labelled as the zeroth law after the first three laws had been established. The zeroth law of thermodynamics defines thermal equilibrium and forms a basis for the definition of temperature: if two systems are each in thermal equilibrium with a third system, then they are in thermal equilibrium ...

  8. Newton's law of cooling - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_cooling

    The opposite is also true: A Biot number greater than 0.1 (a "thermally thick" substance) indicates that one cannot make this assumption, and more complicated heat transfer equations for "transient heat conduction" will be required to describe the time-varying and non-spatially-uniform temperature field within the material body.

  9. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    The laws of thermodynamics imply the following relations between these two heat capacities (Gaskell 2003:23): = = Here is the thermal expansion coefficient: = is the isothermal compressibility (the inverse of the bulk modulus):