Search results
Results from the WOW.Com Content Network
Turbo coding is an iterated soft-decoding scheme that combines two or more relatively simple convolutional codes and an interleaver to produce a block code that can perform to within a fraction of a decibel of the Shannon limit.
Compute forward probabilities Compute backward probabilities β {\displaystyle \beta } Compute smoothed probabilities based on other information (i.e. noise variance for AWGN , bit crossover probability for binary symmetric channel )
The first pass goes forward in time while the second goes backward in time; hence the name forward–backward algorithm. The term forward–backward algorithm is also used to refer to any algorithm belonging to the general class of algorithms that operate on sequence models in a forward–backward manner. In this sense, the descriptions in the ...
Error-correcting codes are used in lower-layer communication such as cellular network, high-speed fiber-optic communication and Wi-Fi, [11] [12] as well as for reliable storage in media such as flash memory, hard disk and RAM. [13] Error-correcting codes are usually distinguished between convolutional codes and block codes:
The general algorithm involves message passing and is substantially similar to the belief propagation algorithm (which is the generalization of the forward-backward algorithm). With an algorithm called iterative Viterbi decoding, one can find the subsequence of an observation that matches best (on average) to a given hidden Markov model.
The analysis of errors computed using the global positioning system is important for understanding how GPS works, and for knowing what magnitude errors should be expected. The Global Positioning System makes corrections for receiver clock errors and other effects but there are still residual errors which are not corrected.
Reducing ε can be done at the cost of CPU time. Near-optimal erasure codes trade correction capabilities for computational complexity: practical algorithms can encode and decode with linear time complexity. Fountain codes (also known as rateless erasure codes) are notable examples of near-optimal erasure codes.
The Baum–Welch algorithm was named after its inventors Leonard E. Baum and Lloyd R. Welch.The algorithm and the Hidden Markov models were first described in a series of articles by Baum and his peers at the IDA Center for Communications Research, Princeton in the late 1960s and early 1970s. [2]