Search results
Results from the WOW.Com Content Network
The rule for integration by parts is derived from the product rule, as is (a weak version of) the quotient rule. (It is a "weak" version in that it does not prove that the quotient is differentiable but only says what its derivative is if it is differentiable.)
In combinatorics, the rule of product or multiplication principle is a basic counting principle (a.k.a. the fundamental principle of counting). Stated simply, it is the intuitive idea that if there are a ways of doing something and b ways of doing another thing, then there are a · b ways of performing both actions. [1] [2]
In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.
Two other well-known examples are when integration by parts is applied to a function expressed as a product of 1 and itself. This works if the derivative of the function is known, and the integral of this derivative times is also known. The first example is (). We write this as:
This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.
The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let and be -times differentiable functions.The base case when = claims that: ′ = ′ + ′, which is the usual product rule and is known to be true.
A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y , the distribution of the random variable Z that is formed as the product Z = X Y {\displaystyle Z=XY} is a product distribution .
In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).