Search results
Results from the WOW.Com Content Network
Some errors are not clearly random or systematic such as the uncertainty in the calibration of an instrument. [4] Random errors or statistical errors in measurement lead to measurable values being inconsistent between repeated measurements of a constant attribute or quantity are taken. Random errors create measurement uncertainty.
An example of a Levey–Jennings chart with upper and lower limits of one and two times the standard deviation. A Levey–Jennings chart is a graph that quality control data is plotted on to give a visual indication whether a laboratory test is working well. The distance from the mean is measured in standard deviations.
The Westgard rules are a set of statistical patterns, each being unlikely to occur by random variability, thereby raising a suspicion of faulty accuracy or precision of the measurement system. They are used for laboratory quality control , in "runs" consisting of measurements of multiple samples.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
If the users know the amount of the systematic error, they may decide to adjust for it manually rather than having the instrument expensively adjusted to eliminate the error: e.g. in the above example they might manually reduce all the values read by about 4.8%.
While precision is a description of random errors (a measure of statistical variability), accuracy has two different definitions: More commonly, a description of systematic errors (a measure of statistical bias of a given measure of central tendency, such as the mean). In this definition of "accuracy", the concept is independent of "precision ...
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.
The statistical errors, on the other hand, are independent, and their sum within the random sample is almost surely not zero. One can standardize statistical errors (especially of a normal distribution ) in a z-score (or "standard score"), and standardize residuals in a t -statistic , or more generally studentized residuals .