enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Westgard rules - Wikipedia

    en.wikipedia.org/wiki/Westgard_Rules

    The Westgard rules are a set of statistical patterns, each being unlikely to occur by random variability, thereby raising a suspicion of faulty accuracy or precision of the measurement system. They are used for laboratory quality control , in "runs" consisting of measurements of multiple samples.

  3. False positives and false negatives - Wikipedia

    en.wikipedia.org/wiki/False_positives_and_false...

    In statistical hypothesis testing, this fraction is given the Greek letter α, and 1 − α is defined as the specificity of the test. Increasing the specificity of the test lowers the probability of type I errors, but may raise the probability of type II errors (false negatives that reject the alternative hypothesis when it is true). [a]

  4. Observational error - Wikipedia

    en.wikipedia.org/wiki/Observational_error

    The Performance Test Standard PTC 19.1-2005 "Test Uncertainty", published by the American Society of Mechanical Engineers (ASME), discusses systematic and random errors in considerable detail. In fact, it conceptualizes its basic uncertainty categories in these terms.

  5. Experimental uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Experimental_uncertainty...

    For example, an experimental uncertainty analysis of an undergraduate physics lab experiment in which a pendulum can estimate the value of the local gravitational acceleration constant g. The relevant equation [1] for an idealized simple pendulum is, approximately,

  6. Accuracy and precision - Wikipedia

    en.wikipedia.org/wiki/Accuracy_and_precision

    While precision is a description of random errors (a measure of statistical variability), accuracy has two different definitions: More commonly, a description of systematic errors (a measure of statistical bias of a given measure of central tendency, such as the mean). In this definition of "accuracy", the concept is independent of "precision ...

  7. Type III error - Wikipedia

    en.wikipedia.org/wiki/Type_III_error

    In statistical hypothesis testing, there are various notions of so-called type III errors (or errors of the third kind), and sometimes type IV errors or higher, by analogy with the type I and type II errors of Jerzy Neyman and Egon Pearson. Fundamentally, type III errors occur when researchers provide the right answer to the wrong question, i.e ...

  8. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    In statistical hypothesis testing, a type I error, or a false positive, is the rejection of the null hypothesis when it is actually true. A type II error, or a false negative, is the failure to reject a null hypothesis that is actually false. [1] Type I error: an innocent person may be convicted. Type II error: a guilty person may be not convicted.

  9. Probability of error - Wikipedia

    en.wikipedia.org/wiki/Probability_of_error

    For a Type I error, it is shown as α (alpha) and is known as the size of the test and is 1 minus the specificity of the test. This quantity is sometimes referred to as the confidence of the test, or the level of significance (LOS) of the test. For a Type II error, it is shown as β (beta) and is 1 minus the power or 1 minus the sensitivity of ...