enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Free electron model - Wikipedia

    en.wikipedia.org/wiki/Free_electron_model

    In solid-state physics, the free electron model is a quantum mechanical model for the behaviour of charge carriers in a metallic solid. It was developed in 1927, [1] principally by Arnold Sommerfeld, who combined the classical Drude model with quantum mechanical Fermi–Dirac statistics and hence it is also known as the Drude–Sommerfeld model.

  3. Seebeck coefficient - Wikipedia

    en.wikipedia.org/wiki/Seebeck_coefficient

    In the free electron model with scattering, the value of ′ / is of order / (), where is the Fermi temperature, and so a typical value of the Seebeck coefficient in the Fermi gas is / (the prefactor varies somewhat depending on details such as dimensionality and scattering).

  4. Thermoelectric effect - Wikipedia

    en.wikipedia.org/wiki/Thermoelectric_effect

    The Peltier effect can be considered as the back-action counterpart to the Seebeck effect (analogous to the back-EMF in magnetic induction): if a simple thermoelectric circuit is closed, then the Seebeck effect will drive a current, which in turn (by the Peltier effect) will always transfer heat from the hot to the cold junction.

  5. Thermoelectric generator - Wikipedia

    en.wikipedia.org/wiki/Thermoelectric_generator

    A thermoelectric generator (TEG), also called a Seebeck generator, is a solid state device that converts heat (driven by temperature differences) directly into electrical energy through a phenomenon called the Seebeck effect [1] (a form of thermoelectric effect).

  6. Effective mass (solid-state physics) - Wikipedia

    en.wikipedia.org/wiki/Effective_mass_(solid...

    For electrons or electron holes in a solid, the effective mass is usually stated as a factor multiplying the rest mass of an electron, m e (9.11 × 10 −31 kg). This factor is usually in the range 0.01 to 10, but can be lower or higher—for example, reaching 1,000 in exotic heavy fermion materials , or anywhere from zero to infinity ...

  7. Wiedemann–Franz law - Wikipedia

    en.wikipedia.org/wiki/Wiedemann–Franz_law

    Free electron model [ edit ] After taking into account the quantum effects, as in the free electron model , the heat capacity, mean free path and average speed of electrons are modified and the proportionality constant is then corrected to π 2 3 ≈ 3.29 {\displaystyle {\frac {\pi ^{2}}{3}}\approx 3.29} , which agrees with experimental values.

  8. Thomas Johann Seebeck - Wikipedia

    en.wikipedia.org/wiki/Thomas_Johann_Seebeck

    In 1810, at Jena, Seebeck described the action of light on silver chloride sensitised paper (a technique used by Johann Ritter). [7] [8] He observed that the exposed chemical would sometimes take on an approximate, pale version of the color of the solar spectrum as projected from a prism to which it had been exposed, and also reported the action of light for a wavelengths beyond the violet end ...

  9. Drude model - Wikipedia

    en.wikipedia.org/wiki/Drude_model

    The model also explains partly the Wiedemann–Franz law of 1853. Drude formula is derived in a limited way, namely by assuming that the charge carriers form a classical ideal gas. When quantum theory is considered, the Drude model can be extended to the free electron model, where the carriers follow Fermi–Dirac distribution. The conductivity ...