enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. C mathematical functions - Wikipedia

    en.wikipedia.org/wiki/C_mathematical_functions

    The type-generic macros that correspond to a function that is defined for only real numbers encapsulates a total of 3 different functions: float, double and long double variants of the function. The C++ language includes native support for function overloading and thus does not provide the <tgmath.h> header even as a compatibility feature.

  3. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.

  4. C data types - Wikipedia

    en.wikipedia.org/wiki/C_data_types

    Fastest integer types that are guaranteed to be the fastest integer type available in the implementation, that has at least specified number n of bits. Guaranteed to be specified for at least N=8,16,32,64. Pointer integer types that are guaranteed to be able to hold a pointer. Included only if it is available in the implementation.

  5. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point arithmetic originally established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE).

  6. Rounding - Wikipedia

    en.wikipedia.org/wiki/Rounding

    In the example from "Double rounding" section, rounding 9.46 to one decimal gives 9.4, which rounding to integer in turn gives 9. With binary arithmetic, this rounding is also called "round to odd" (not to be confused with "round half to odd"). For example, when rounding to 1/4 (0.01 in binary), x = 2.0 ⇒ result is 2 (10.00 in binary)

  7. x86 instruction listings - Wikipedia

    en.wikipedia.org/wiki/X86_instruction_listings

    The default OperandSize and AddressSize to use for each instruction is given by the D bit of the segment descriptor of the current code segment - D=0 makes both 16-bit, D=1 makes both 32-bit. Additionally, they can be overridden on a per-instruction basis with two new instruction prefixes that were introduced in the 80386:

  8. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    It returns the exact value of x–(round(x/y)·y). Round to nearest integer. For undirected rounding when halfway between two integers the even integer is chosen. Comparison operations. Besides the more obvious results, IEEE 754 defines that −∞ = −∞, +∞ = +∞ and x ≠ NaN for any x (including NaN).

  9. Integer overflow - Wikipedia

    en.wikipedia.org/wiki/Integer_overflow

    Integer overflow can be demonstrated through an odometer overflowing, a mechanical version of the phenomenon. All digits are set to the maximum 9 and the next increment of the white digit causes a cascade of carry-over additions setting all digits to 0, but there is no higher digit (1,000,000s digit) to change to a 1, so the counter resets to zero.