Search results
Results from the WOW.Com Content Network
For supernovae at redshift less than around 0.1, or light travel time less than 10 percent of the age of the universe, this gives a nearly linear distance–redshift relation due to Hubble's law. At larger distances, since the expansion rate of the universe has changed over time, the distance-redshift relation deviates from linearity, and this ...
For example, galaxies that are farther than the Hubble radius, approximately 4.5 gigaparsecs or 14.7 billion light-years, away from us have a recession speed that is faster than the speed of light. Visibility of these objects depends on the exact expansion history of the universe.
As the inflationary field slowly relaxes to the vacuum, the cosmological constant goes to zero and space begins to expand normally. The new regions that come into view during the normal expansion phase are exactly the same regions that were pushed out of the horizon during inflation, and so they are at nearly the same temperature and curvature ...
Such recession speeds do not correspond to faster-than-light travel. Many popular accounts attribute the cosmological redshift to the expansion of space. This can be misleading because the expansion of space is only a coordinate choice. The most natural interpretation of the cosmological redshift is that it is a Doppler shift. [94]
One classical thermal escape mechanism is Jeans escape, [1] named after British astronomer Sir James Jeans, who first described this process of atmospheric loss. [2] In a quantity of gas, the average velocity of any one molecule is measured by the gas's temperature, but the velocities of individual molecules change as they collide with one another, gaining and losing kinetic energy.
If dark energy—represented by the cosmological constant, a constant energy density filling space homogeneously, [3] or scalar fields, such as quintessence or moduli, dynamic quantities whose energy density can vary in time and space—accelerates the expansion of the universe, then the space between clusters of galaxies will grow at an ...
The “Chandler Wobble” – a natural shifting of the Earth’s axis due to the planet not being perfectly spherical – could be linked to the spinning speeds, timeanddate.com reported.
The Alcubierre drive ([alkuˈβjere]) is a speculative warp drive idea according to which a spacecraft could achieve apparent faster-than-light travel by contracting space in front of it and expanding space behind it, under the assumption that a configurable energy-density field lower than that of vacuum (that is, negative mass) could be created.