Search results
Results from the WOW.Com Content Network
In the natural sciences, a vector quantity (also known as a vector physical quantity, physical vector, or simply vector) is a vector-valued physical quantity. [9] [10] It is typically formulated as the product of a unit of measurement and a vector numerical value (), often a Euclidean vector with magnitude and direction.
A map from this sphere to a unit sphere of dimension n − 1 can be constructed by dividing each vector on this sphere by its length to form a unit length vector, which is a point on the unit sphere S n−1. This defines a continuous map from S to S n−1. The index of the vector field at the point is the degree of this map. It can be shown ...
[1] [2] The term normalized vector is sometimes used as a synonym for unit vector. A unit vector is often used to represent directions , such as normal directions . Unit vectors are often chosen to form the basis of a vector space, and every vector in the space may be written as a linear combination form of unit vectors.
In linear algebra, a column vector with elements is an matrix [1] consisting of a single column of entries, for example, = [].. Similarly, a row vector is a matrix for some , consisting of a single row of entries, = […]. (Throughout this article, boldface is used for both row and column vectors.)
By referring collectively to e 1, e 2, e 3 as the e basis and to n 1, n 2, n 3 as the n basis, the matrix containing all the c jk is known as the "transformation matrix from e to n", or the "rotation matrix from e to n" (because it can be imagined as the "rotation" of a vector from one basis to another), or the "direction cosine matrix from e ...
A scalar in physics and other areas of science is also a scalar in mathematics, as an element of a mathematical field used to define a vector space.For example, the magnitude (or length) of an electric field vector is calculated as the square root of its absolute square (the inner product of the electric field with itself); so, the inner product's result is an element of the mathematical field ...
In geometry and mechanics, a displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. [1] It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory.
The tangent bundle of the circle S 1 is globally isomorphic to S 1 × R, since there is a global nonzero vector field on S 1. [nb 12] In contrast, by the hairy ball theorem, there is no (tangent) vector field on the 2-sphere S 2 which is everywhere nonzero. [92] K-theory studies the isomorphism classes of all vector bundles over some ...