Search results
Results from the WOW.Com Content Network
Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction, or component) to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtration, and distillation. Mass transfer is used by different scientific disciplines for different processes ...
Convection (or convective heat transfer) is the transfer of heat from one place to another due to the movement of fluid. Although often discussed as a distinct method of heat transfer, convective heat transfer involves the combined processes of conduction (heat diffusion) and advection (heat transfer by bulk fluid flow ).
Convective heat transfer, or simply, convection, is the transfer of heat from one place to another by the movement of fluids, a process that is essentially the transfer of heat via mass transfer. The bulk motion of fluid enhances heat transfer in many physical situations, such as between a solid surface and the fluid. [10]
For mass transfer at an interface, we can equate Fick's law with Newton's law for convection, yielding: J = D d C d y = h m ( C m − C b ) {\displaystyle J=D{\frac {dC}{dy}}=h_{m}(C_{m}-C_{b})} Where J {\displaystyle {J}} is the mass flux [kg/s m 3 {\displaystyle {m^{3}}} ], D {\displaystyle {D}} is the diffusivity of species a in fluid b, and ...
Mass transfer coefficients can be estimated from many different theoretical equations, correlations, and analogies that are functions of material properties, intensive properties and flow regime (laminar or turbulent flow). Selection of the most applicable model is dependent on the materials and the system, or environment, being studied.
The Marangoni effect (also called the Gibbs–Marangoni effect) is the mass transfer along an interface between two phases due to a gradient of the surface tension. In the case of temperature dependence, this phenomenon may be called thermo-capillary convection [ 1 ] or Bénard–Marangoni convection .
The same restrictions described in the heat transfer definition are applied to the mass transfer definition. The Sherwood number can be used to find an overall mass transfer coefficient and applied to Fick's law of diffusion to find concentration profiles and mass transfer fluxes.
For a viscous, Newtonian fluid, the governing equations for mass conservation and momentum conservation are the continuity equation and the Navier-Stokes equations: = = + where is the pressure and is the viscous stress tensor, with the components of the viscous stress tensor given by: = (+) + The energy of a unit volume of the fluid is the sum of the kinetic energy / and the internal energy ...