enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Haber process - Wikipedia

    en.wikipedia.org/wiki/Haber_process

    The Haber process, [1] also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. [ 2 ] [ 3 ] It converts atmospheric nitrogen (N 2 ) to ammonia (NH 3 ) by a reaction with hydrogen (H 2 ) using finely divided iron metal as a catalyst:

  3. Human impact on the nitrogen cycle - Wikipedia

    en.wikipedia.org/wiki/Human_impact_on_the...

    Utilizing a large amount of metabolic energy and the enzyme nitrogenase, some bacteria and cyanobacteria convert atmospheric N 2 to NH 3, a process known as biological nitrogen fixation (BNF). [4] The anthropogenic analogue to BNF is the Haber-Bosch process, in which H 2 is reacted with atmospheric N 2 at high temperatures and pressures to ...

  4. History of the Haber process - Wikipedia

    en.wikipedia.org/wiki/History_of_the_Haber_process

    The history of the Haber process begins with the invention of the Haber process at the dawn of the twentieth century. The process allows the economical fixation of atmospheric dinitrogen in the form of ammonia, which in turn allows for the industrial synthesis of various explosives and nitrogen fertilizers, and is probably the most important industrial process developed during the twentieth ...

  5. Nitrogen fixation - Wikipedia

    en.wikipedia.org/wiki/Nitrogen_fixation

    Fertilizer production is now the largest source of human-produced fixed nitrogen in the terrestrial ecosystem. Ammonia is a required precursor to fertilizers , explosives , and other products. The Haber process requires high pressures (around 200 atm) and high temperatures (at least 400 °C), which are routine conditions for industrial catalysis.

  6. Fertilizer - Wikipedia

    en.wikipedia.org/wiki/Fertilizer

    The 1910s and 1920s witnessed the rise of the Haber process and the Ostwald process. The Haber process produces ammonia (NH 3) from methane (CH 4) (natural gas) gas and molecular nitrogen (N 2) from the air. The ammonia from the Haber process is then partially converted into nitric acid (HNO 3) in the Ostwald process. [14]

  7. History of fertilizer - Wikipedia

    en.wikipedia.org/wiki/History_of_fertilizer

    The Ostwald process is a chemical process for production of nitric acid (HNO 3), which was developed by Wilhelm Ostwald (patented 1902). It is a mainstay of the modern chemical industry and provides the raw material for the most common type of fertilizer production, globally (for example, ammonium nitrate , a common fertilizer, is made by ...

  8. Fritz Haber - Wikipedia

    en.wikipedia.org/wiki/Fritz_Haber

    Fritz Haber (German: [ˈfʁɪt͡s ˈhaːbɐ] ⓘ; 9 December 1868 – 29 January 1934) was a German chemist who received the Nobel Prize in Chemistry in 1918 for his invention of the Haber process, a method used in industry to synthesize ammonia from nitrogen gas and hydrogen gas.

  9. Ammonia - Wikipedia

    en.wikipedia.org/wiki/Ammonia

    The Haber process, [146] also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. [ 147 ] [ 148 ] It converts atmospheric nitrogen (N 2 ) to ammonia (NH 3 ) by a reaction with hydrogen (H 2 ) using finely divided iron metal as a catalyst: