enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mean value theorem (divided differences) - Wikipedia

    en.wikipedia.org/wiki/Mean_value_theorem...

    In mathematical analysis, the mean value theorem for divided differences generalizes the mean value theorem to higher derivatives. [ 1 ] Statement of the theorem

  3. Strict differentiability - Wikipedia

    en.wikipedia.org/wiki/Strict_differentiability

    The simplest setting in which strict differentiability can be considered, is that of a real-valued function defined on an interval I of the real line. The function f:I → R is said strictly differentiable in a point a ∈ I if

  4. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    If there exists an m × n matrix A such that = + ‖ ‖ in which the vector ε → 0 as Δx → 0, then f is by definition differentiable at the point x. The matrix A is sometimes known as the Jacobian matrix , and the linear transformation that associates to the increment Δ x ∈ R n the vector A Δ x ∈ R m is, in this general setting ...

  5. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    A function of a real variable is differentiable at a point of its domain, if its domain contains an open interval containing ⁠ ⁠, and the limit = (+) exists. [2] This means that, for every positive real number ⁠ ⁠, there exists a positive real number such that, for every such that | | < and then (+) is defined, and | (+) | <, where the vertical bars denote the absolute value.

  6. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    2.1 Polynomial or elementary power rule. 2.2 Reciprocal rule. 2.3 Quotient rule. ... Differentiable function – Mathematical function whose derivative exists;

  7. Differential (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Differential_(mathematics)

    For example, if x is a variable, then a change in the value of x is often denoted Δx (pronounced delta x). The differential dx represents an infinitely small change in the variable x. The idea of an infinitely small or infinitely slow change is, intuitively, extremely useful, and there are a number of ways to make the notion mathematically ...

  8. Mean value theorem - Wikipedia

    en.wikipedia.org/wiki/Mean_value_theorem

    The reason why there is no analog of mean value equality is the following: If f : U → R m is a differentiable function (where U ⊂ R n is open) and if x + th, x, h ∈ R n, t ∈ [0, 1] is the line segment in question (lying inside U), then one can apply the above parametrization procedure to each of the component functions f i (i = 1 ...

  9. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    It is differentiable everywhere except at the point x = 0, where it makes a sharp turn as it crosses the y-axis. A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be continuous at x 0. In particular, any differentiable function must ...