enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Solenoid - Wikipedia

    en.wikipedia.org/wiki/Solenoid

    By Ampère's law, we know that the line integral of B (the magnetic flux density vector) around this loop is zero, since it encloses no electrical currents (it can be also assumed that the circuital electric field passing through the loop is constant under such conditions: a constant or constantly changing current through the solenoid). We have ...

  3. Maxwell–Lodge effect - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Lodge_effect

    Solenoid and B field with the flow through a surface S of base l Resuming the original definition of Maxwell on the potential vector, according to which is a vector that its circuitation along a closed curve is equal to the flow of B {\displaystyle \mathbf {B} } through the surface having the above curve as its edge, [ 3 ] i.e.

  4. Solenoidal vector field - Wikipedia

    en.wikipedia.org/wiki/Solenoidal_vector_field

    An example of a solenoidal vector field, (,) = (,) In vector calculus a solenoidal vector field (also known as an incompressible vector field , a divergence-free vector field , or a transverse vector field ) is a vector field v with divergence zero at all points in the field: ∇ ⋅ v = 0. {\displaystyle \nabla \cdot \mathbf {v} =0.}

  5. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    A magnetic field (sometimes called B-field [1]) is a physical field that describes the magnetic influence on moving electric charges, electric currents, [2]: ch1 [3] and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field.

  6. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field. Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths.

  7. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    The equations introduce the electric field, E, a vector field, and the magnetic field, B, a pseudovector field, each generally having a time and location dependence. The sources are The sources are the total electric charge density (total charge per unit volume), ρ , and

  8. Solenoid (engineering) - Wikipedia

    en.wikipedia.org/wiki/Solenoid_(engineering)

    In engineering, a solenoid is a device that converts electrical energy to mechanical energy, using an electromagnet formed from a coil of wire.The device creates a magnetic field [1] from electric current, and uses the magnetic field to create linear motion.

  9. Aharonov–Bohm effect - Wikipedia

    en.wikipedia.org/wiki/Aharonov–Bohm_effect

    The most commonly described case, sometimes called the Aharonov–Bohm solenoid effect, takes place when the wave function of a charged particle passing around a long solenoid experiences a phase shift as a result of the enclosed magnetic field, despite the magnetic field being negligible in the region through which the particle passes and the ...