enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Word embedding - Wikipedia

    en.wikipedia.org/wiki/Word_embedding

    In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis . Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [ 1 ]

  3. Knowledge graph embedding - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph_embedding

    All the different knowledge graph embedding models follow roughly the same procedure to learn the semantic meaning of the facts. [7] First of all, to learn an embedded representation of a knowledge graph, the embedding vectors of the entities and relations are initialized to random values. [7]

  4. FaceNet - Wikipedia

    en.wikipedia.org/wiki/FaceNet

    The system uses a deep convolutional neural network to learn a mapping (also called an embedding) from a set of face images to a 128-dimensional Euclidean space, and assesses the similarity between faces based on the square of the Euclidean distance between the images' corresponding normalized vectors in the 128-dimensional Euclidean space.

  5. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    The first layer is the embedding layer, which contains three components: token type embeddings, position embeddings, and segment type embeddings. Token type: The token type is a standard embedding layer, translating a one-hot vector into a dense vector based on its token type.

  6. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...

  7. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  8. Vision transformer - Wikipedia

    en.wikipedia.org/wiki/Vision_transformer

    The teacher network is an exponentially decaying average of the student network's past parameters: ′ = + +. The inputs to the networks are two different crops of the same image, represented as T ( x ) {\displaystyle T(x)} and T ′ ( x ) {\displaystyle T'(x)} , where x {\displaystyle x} is the original image.

  9. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    Networks such as the previous one are commonly called feedforward, because their graph is a directed acyclic graph. Networks with cycles are commonly called recurrent. Such networks are commonly depicted in the manner shown at the top of the figure, where is shown as dependent upon itself. However, an implied temporal dependence is not shown.